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ABSTRACT 

Thf coiiiplcto analysis and interpretation of the information in image data is a com-

[)I('x [)r()< f'ss. This dissertation presents 3 major rontributions to image analysis, namely, 

global rruiltiscale detec tion, local .scale analysis, and boimdary extraction. Global scale 

analysis is related to identification of tlie varions scales presented in the image. new 

approach for global scale analysis is developed ba.sed on the differential power spectrum 

normalized variance ratio (DPSW'R). The DPSW'R is the ratio of the second order 

normalized central moment of tlie power spectrum of the image to that of the nnilti.scale 

differential mask. Local maxima in DPSW'R graph directly indicate the global .scales 

in the image. Local scale analysis performs a more detailed analysis of the edges to 

eliminate effects of blurring. A method ba.sed on nuitilscale feature matching has been 

pr<j{)()sed. Details obtained at all scales are treated using a scale invariant normaliza­

tion scheme. Besides local scale analysis, a multiscale data fusion algorithm has been 

im[)lemented which leads to the new concept of multiple .scale differential masks. The 

multii)le scale differential mask generated using a range of .scale values pos.ses.ses the re­

markable shape preservation property which makes it superior to traditional nndti.scale 

masks. Finally the complete .seciuential boundary extraction algorithm ba.sed on particle 

motion in a velocity field is pre.scnted. The boundary extraction algorithm incorporates 

edge loc alization, boundary representation, and automated .selection of boundary extrac­

tion parameters. The global .scale analysis techniques in conjunction with the boundary 

c'xtraction algcnithm provide a multiscale image .segmentation algrjrithm. 
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CHAPTER 1. INTRODUCTION 

Siiico thc> invention of digital computers, the world has changed unimaginably. Dig­

ital computers linking mathematical theories to real world applications have openetl up 

a new era of science and technology. The powerful computational capability of today"s 

computers enables many highly complex tasks that were once performed by human 

operators. One of tlie rapidly growing areas, digital image processing, is a result of 

a marriage between multi-dimensional signal processing theory and digital computers. 

Digital imagery, in its general form, refers to a discretely sampled version of a continu­

ous nuiltirlimensional scene and is typically repro.sented by an array of discrete numbers. 

Digital image proce.ssing ranges from low level processes such as image acquisition and 

image enhancement to highly sophisticated tasks such as object recognition and .scene 

interpretation similar to those performed by a human brain. Today, digital image pro­

ce.ssing has been employed in a variety of applications ranging from movie production 

to deep space exploration. 

.\n important area of digital image processing involves analysis of pictorial informa­

tion contained in image data. Image analysis basically consists of three steps; low-level 

image accpusition and enhancement, intermecliate-level image representation, and high-

level image interpretation. The low level proce.ssing functions as a front-end of a visual 

system including sensing and preprocessing that supplies images in suitable formats. 

The intermediate level processing, involving feature extraction and representation, re­

trieves and converts important features from an imiige into explicitly organized data 

struc tures. This step drastically reduces amount of data to be analyzed while retaining 

useful struc tural information for further analysis. Finally, the extractc^l information is 

used in conjunction with a knowledge-leased system for less explicit but more abstract 

high-level scene interpretation. The final process involves the labeling, reccjgnition. stor­

age. interpretation, and classification of extracted objects. In terms of sophistication, 

this task is analogous to the recognition and interpretation functions of a human brain. 

In gcMieral. image analysis uses differential structures such as corners, lines, and edges 

since these structures are natural representation of pictorial information. For instance. 
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edges separating objects from background determine object location and extension while 

corners determine the shape of an object. Differential structures are constructed using 

differential operators and methods of differential geometry. Among these differential 

structures, edges are the most important since objects can be concisely described by a 

seciueuce of edges. In fact, biological visual .systems are known to exploit edge informa­

tion. Proces.ses such as edge detection and boundary extraction that provide structured 

edge information are essential for image analysis. Xevertheless. since an iruage usually 

(•oin[)rises iiiulti.scale structures, feature extraction has to handle the problem of scale. 

()l)jf( ts in an image may have different meanings depending upon scale of observation 

and thus analysis of an image inevitably recjuires scale of interest to be specified. With­

out prior knowledge of scale of observation, the problem of scale .selection increiises the 

complexity of image analysis. Therefore inuige analysis essentially requires not oidy 

processing methods for enhancing image data but also a strategy for identifying scales 

of objects in the image. This dissertcition focuses prinuirily on the problem of scale, 

multiscale differeruial operators, edges, and boundary extraction algorithm, all of which 

are crucial in image analysis. 

In the previous work [22]. nuiltiscale differential operators based on image moment 

vectors and l>oundary extraction algorithm ba.sed on particic motion in a force field were 

developed. The boundary extraction algorithm in conjunction with the edge operators 

that [)osse.ss size adjustable features is capable of {)roviding boundary information with 

sub-pixel resolution at a corresponding scale if the scale parcxmeter is selected previously. 

The global scale analysis method based on statistical characteristics of edges in the .scale 

domain was proposed for scale detection and .selection. However, this strategy lacks the 

development of a theory for the analysis of global and local .scales. In addition, the 

previous boundary e.xtraction algorithm was performed cit a single scale in each pass 

and reciuired .several user input parameters. 

In this di.s.sortation. the earlier work has been extended to obtain complete nuilti.scale 

image analysis. General theories for global and local scale analysis and a general scheme 

for boundary extraction are also developed. Major contributions in this dissertation are 

I) a mathematical scheme for the analysis of global scales. 2) a mathematical scheme for 

the analysis of local .scales and the generalized nuiltiple scale differential operator, and 

-3) the generalized boundary extraction algorithm based on particle motion in a veloc­

ity field and imi)lementation of 2-dimensional sequential boundary extraction algorithm. 

The concept of global scale analysis based on the differential power spectrum normalized 

variance ratio is introduced. The behavior of edges in scalc-frecjuency donuiin reveals 
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iiifonnatioii of existing global scales embedded in an image. In contrast to global scale 

analysis, local scale analysis is based on feature matching of regional properties of an 

imago and is performed in scale-space domain. Local scale analysis leads to the novel 

c oncept of multiple scale differential masks that extract features of multiple scales simul­

taneously. By preserv ing structures that survive over a range of scales, the new operator 

eliminates the problem of shape distortion introduced by large size differential operators. 

•At the same time, spurious details that do not survive over a range of scales are sup­

pressed. The use of multiple scale differential masks significantly simplifies the selection 

of .sc ale for image analysis and hence reduces computational effort. For boundary ex-

trac tion. the generalized algorithm developed from the previous model based on particle 

motion in a velocity field is improved by incorporating a new edge localization feature. 

The method can be used in conjunction with a novel multiple scale differential operators 

to increase the scale selection tolerance. Practical considerations are taken into account 

in developing a stable boundary extraction algorithm and suitable data structures for 

l)ouridary representation. Several termination criteria that enable the algorithm to run 

smoothly are implemented. In addition, compacted boundary representation based on 

image features such as corners is also included. In sunmiary. a complete framework for 

multiscale image analysis is established. 

The rest of this dissertation is organizc^cl as follows. In Chapter 2. a literature review 

of i)revious work related to differential structures, .scale-space analysis, edge detection, 

image segmentation, and multiscale image analysis are pre.sented. Chapter 3 describes 

several techniciuc^s for global scale analysis. The concept of feature matching in local 

sc ale analysis and the new multiple scale differential operators are introduced in Chapter 

4. The generalized boundary extraction algorithm based on particle motion in a velocity 

field and its practical implementation are presented in Chapter 5. Concluding remarks 

are given in the final chapter. 
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CHAPTER 2. REVIEW OF LITERATURE 

2.1 Differential Structures and Multiscale Differential 

Operators 

Differential struc tures of an image play an important role in image analysis. For 

example, the zero order differential structure of an image is the image it.self. the subject 

of image analysis. The gradient and curvature of an image are the first and second order 

flifferential structures of an image respectively. Since areas of high gradient magnitude 

correspond to object edges while local extrema c:)f image curvature correspond to object 

corners, the significance of gradient and curvature as natural descriptors c:)f edges and 

corners is obvious. Derivatives of an image with respect to spatial position provide 

crucial information of differential structures a.ssociated with spatial positions. Such 

information is u.seful in image analysis tcj indicate where to look for features embedded 

in an image. Interestingly, biological visual systems al.so exploit differential structures. 

(>sp(H ially tnlges. since typical recejitive fields found in animal eyes act as differential 

operators [4C]. In fact, differential structures are natural descriptors of image structures. 

Differential operators are fundamental tools in the analysis and .synthesis of differen­

tial struc tures. Digital image analysis algorithms rely on primitive difference operators 

of small window sizes [10. 27. 31. 39. 40. 42. 69, 72] that mimic mathematical differ­

ential o[)erators by utilizing the smallest neighborhoods available in a di.screte image. 

For instanc e, the Sobel. Robert, and Prewitt opeators are implemented on masks of size 

3 X 3 pixels [31. 39. 40]. Although, implementation of these operators is intuitive and 

simi)le. it (overlooks the fundamental problem of physical ob.servables. the problem of 

scale. In an image, all objccts are a.s.sociated with scale.s. Objects in an image may have 

different meanings depending upon .scale of ob.servation. Objects of large scales may 

c ()m[n i.se objects of smaller scales or individual objects of small .scales may be consid­

ered meaningle.ss at larger scales. Hence, in image analysis, all operations require .scales 

of interest to be known. Differential operators using fixed size difference masks do not 

jjosses the fle.xibility to handle multiscale feature extraction problems. Without taking 
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into accomit the scale of objects, operators working at fixed small scales are vulnerable 

to noise and ineffective in capturing image structures at arbitrary scales. 

.Marr and Hildreth [62] introduced two fundamental concepts of multiscale image 

analysis. First, in natural images, intensitj- changes occur over a wide range of scales. 

To deal sei>arately with each scale, it is necessar>- to filter the image in order to reduce 

the range of scales over which intensity changes take place. Second, it is essential to 

utilize pictorial information at several scales. Several attempts were made to develop 

multiscale differential operators using larger, smoother, and size adjustable difference 

ina.sks c aj)able of rendering image derivatives at different scales with better noi.se sup-

I)ressi()ii al)ility. For example. Rosenfeld and Thurston [71] introduced the solution to 

nuiltiscale edge detection problems based on variable size difference operators called the 

difference of bo.Kes (DOB) which is the difference between the average of pi.Kels in a 

pair of non cn-erlapping variable size scjiuire neighborhoods. Macleod [GO] and Arg\ie [2] 

suggested the u.se of smoother differential operators for edge detection in noisy images. 

.Macleoud's o[)erator approximates the first derivative of the two-dimensional Gaussian 

function using the difference of two displaced two-dimensional Gaussian functions while 

-ArgyU^ suggested the use of a one-dimensional split Gau.ssian function. Other multi.scale 

differential oi)erators include moment ba.sed edge operators [23. 57. 58. 59. G8. 78] and 

multiscale La{)Iacian operators [Gl. G2]. Each technique differs from the others only in 

the order and configuration of the rruisks. Caimy [9] proposed 3 criteria for evaluating 

the performance of nuiltiscale differential operators: i) detection by maximizing out­

put signal to noise ratio, ii) localization by minimizing the root-niean-.square (listance 

from detected edges to true edges, and Hi) the multiple response constraint for reduc­

ing the number of spurious extrema. .A.n efficient appro.xinuition of Canny's operator is 

the sani[)led version of the first derivative of a two-dimensional Gaussian function or the 

Gaussian differential filter [2G]. Because derivatives of a Gaussian function po.ssess many 

good characteristics including causality with respect to resolution and can be computed 

with less effort, they have been widely used in many applications. 

In geiuTal. multi.scale differential operators have the capability to render differential 

structures at any desired re.solution. These techniques have improved noise suppression 

perfornutnce with a trade off between the accuracy of edge localization and level of noise 

suppression. This presents tlie problem of scale selection where one must compromise 

between ma.ximizing signal strengtli at a particular .scale while minimizing signal strength 

at other scales. The success or failure of inuige analysis relies strongly on the choice of 

scalc> jjarameters used in multiscale masks. 
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2.2 Scale-Space Theory and Scale Analysis 

The mat hematical framework for the analysis and selection of scales appears in scale-

space literature [4. 26. 43. 48. 49. 75. 79. 82]. The scale-space theory is based on the 

concept that measurement and interpretation of the physical world cannot be completed 

without specifying the scale of an object. The significant difference between observation 

made in the real world and a pure mathematical concept is that the mathematical 

definition of a point having an infinitesimal width and the smoothness constraint of 

the underlying function cannot be achieved in real world ob.servations. In other words. 

niath(^matical rules are dimensionless and scale independent. Witkin [82j introduced the 

r(>rni "scale-space" representation as a result of embedding an image in a scale-parameter 

family of smoothed inuiges. .-V .scale-space inuige is obtained by convolving the image with 

Gaussian kernels over a continuum of scales. Koenderink [43] pointed that convolving 

the Gaussian kernel with the image is equivalent to the solution of the i.sotropic diffusion 

[jroce.ss with the original inuige as an initial condition. This proce.ss prevents spurious 

structures to be created after resolution is diminished. Based on the Gaussian scale-

space concept. Florack et at [2G] and ter Harr Ronieny et al [79] introduced the concept 

of scale invariance and formulated the framework for analysis and synthesis of .scale-space 

differential structures in images. In fact, the Gaussian kernel is a natural representation 

of a [)oint in scale-space representation of the physical world. 

One fundamental assumption of .scale-space analysis is causality with respect to res­

olution: no spurious details at the coarser level of resolution should be created as the 

scale increases [80]. Baijaud ct al [4] proved that the Gau.ssian function is the oidy kernel 

that possesses this property. In fact, the properties of the Gaussian convolution can be 

sumnuirized as follows: 

1. Causality: the Gaussian convolution is causal in the sen.se that the numbers of 

Icjcal e.xtrerna as well as zero crossing paths of diffused images are less than or 

ecjual to those of the original image [4. 83]. 

2. Continuous semi-group structure: tiie convolution of two Gaussian kernels 

results in the Gaussian kernel of the same .scale-parameter family. 

3. Isotropy, linearity, and shift invariance: the Gaussian smoothing operator is 

isotropic, linear, and shift invariant. 

4. Simplicity: the Gau.ssian function is differentiable and its Fourier transform is 

simple enabling the direct computation of higher order differential operators. 
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Liiiclonberg [48] derived the scale-space theor\- for discrete signals where the Gaussian 

kernels are replaced by the kernels derived from the modified Bessel functions. The 

modified kernels a.ssure that the causality property is not violated as a result of signal 

discretization. 

Onc e nuiltiscale information is obtained, schemes for data reduction and extraction 

of significant structures from scale-space representation arc noce.ssar\'. The solutions 

of miiltiscale data utilization do not come directly from scale-space theory but from 

tlie l)ehavior of image structures in .scale-space such as image gradient [5]. maximum 

gradi(>iir paths [.34], zero crossings of Laplacian images [32. 56]. intensity extrema [47]. 

and gradient watersheds [28. 29. G7]. In these tecliniques. exhaustive searches, tracking 

schemes that hierarchically links structures of interest at different scales together, either 

from coarse .scales to fine .scales or from fine .scales to coarse scales, and techniques for 

Iiandling structures of different topologies at different scales are employed. 

T(j extract image features of different size efficiently, scale parameters of kernels need 

to match desired structures. In the early use of nuiltiscale differential masks, without 

prior knowledge of scale, .selection of .scales was done in an ad hoc fashion. Modeling 

structures of different sizes as diffu.sed versions of an ideal structure with different degrees 

of blur. Lindeiiberg [50. 51. 52. 53] proposed a methodology for .selecting .scale parameters 

to match local structure sizes by maximizing the normalized measure of local structure 

strength. .Automatic local scale detection for image structures including grey-level blobs, 

conicrs. and junctions [50. 53]. edges and ridges [51. 52]. distances between ridges [l]. 

and lines [55] have been proposed. In addition to local .scale analysis, other techniques 

inc luding l)lur estimation [20. 84] and estimation of depths from focus [17] and defocus 

[7G. 77] are closely related to local scale analysis. In these techniques, degrees of blur 

of local details are estimated in terms of Gaussian spread constants. In [17. 7G. 77] this 

information is further converted into depth information. Besides local scale analysis, 

the .scheme for global .scale detection based on global properties of edges in scale-space 

has been propo.sed by Eua-.\nant [22] and Eua-.A.nant and Udpa [25]. Local minima 

of eclge-characteristic-.scale curves are used as the guidance for global scale detection. 

However, the method is not versatile and is sensitive to noise. 

2.3 Image Segmentation 

Image segmentation plays a fundamental role in image analysis and computer vision. 

Typically, image analysis applications employ image segmentation in the early stage 
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to partition tiio imago into constituent parts. Image segmentation can be broadly di­

vided into 3 classes, namely pixel-oriented, region-oriented, and edge-oriented techniques 

[31. 37. 40. 74]. Pixel-oriented techniques mainly rely on global measurement profiles 

such as pi.xel intensity histogram while local connectivity information is discarded. Con­

sequently these methods perform poorly in the presence of noise and intensity variations. 

.A.1.SO. these methods usually require prior knowledge of visual attributes of regions to 

he segmented. On the other hand, region-oriented technicjues such as region growing 

and region splitting and merging are dynamic algorithms that link local pixels into seg-

ineiitefl regions by considering both similarity and connectivity between pixels in local 

areas. Ba.sed on statistical and structural approaches, these methods are more robust 

in the presence of noise and yield more promising results at the expense of higher coni-

I)Utalional effort to perform massive parallel searches in the regions of interest. Besides 

pi.xel-oriented and region-oriented techniques that focus on extracting regions of similar 

attributes, edge-oriented technicjues emphasize the extraction of edges or boundaries be­

tween regions by exploiting information of di-scontiruiity between the regions. The major 

advantage of boundary e.xtraction over region e.xtraction is the reduction in storage and 

c cjinputational cost, whereas the disadvantage of boundary e.xtraction is the possibility 

of getting incomplete boundaries or mi.ssing fuzzy boundaries. 

2.3.1 Edge-Oriented Image Segmentation 

The first step in most edge-oriented image segmentation techniques is to enhance 

edges at desired scales using edge operators while reducing noi.se by means of filtering. 

G(>nerally. in a monochrome image, edges are as.sociated with aijrupt changes of intensity 

distribution and edge operators are normally employed to detect the presence of these 

transitions. .Such changes can be detected in the form of extrema and zero crossings of 

image derivatives. Due to the fact that many edges found in real images arc approxi­

mation to step edges, the most commonly used edge operators are the first and second 

(H'der differential operators. 

2.3.1.1 Edge detection 

Based behavior of derivatives of step edges, edge detection by means of thresholding 

image gradient magnitude or detecting zero crossings of image Laplacian is simple and 

straight forward [31. 40. 4C. C2, 74]. In the gradient thresholding methods, pixels having 

gradient magnitude above the threshold level are considered as edge pi.xels while in the 

r.ai)lacian-based methods, edge elements repre.sent borders between pairs of pixels where 
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changos in signs of image Laplacian occur. Nevertheless, since differential operators 

functioning iis a high pass filter enhance not only edges but also noise, these methods 

are sensitive to noise. In addition, since gradient thresholding methods mainly rely 

on gradient magnitude, slight variations in gradient magnitude especially at corners and 

junctions where the gradient field is weak often yield discontinuities in the results. In the 

case of blurred images, direct gradient thresholding without utilizing other information 

often produces unacceptable thick edges. For the Laplacian ba.sed methods, although the 

location of a step edge coincides with the zero crossing of the Laplacian. the converse is 

not always true anrl thus zero crossing detection often yields false boundary indications. 

.Junctit)ns also present a problem for the Laplacian-based edge detection methods. In 

areas where .3 or more regions meet, the assumption that different signs of Laplacian 

occupy different regions is invalid and thus detection of zero crossings gives ri.se to 

boundary localization errors. 

The next step in edge-oriented image segmentation is to estimate boundaries from 

edge information, .\mong boundary estimation techniques, two approaches have gained 

significant popularity, namely tempjlate matching and edge linking. In template match­

ing. the estimated boundary is modeled as a deformable curve interacting with the image 

dynamically in order to nuiximize the likelihood between the model and image data. In 

contrast to template matching, in edge linking, the ijoiuidary is sequentially extracted 

along the object edges by mean of a driving force such as connectivity of edge pi.xels. 

Compared to edge-linking techniques, boundary extraction techniques using deformable 

contour models yield superior performance: more robust, better boundary localization, 

and higher cpiality of e.xtracted results while edge linking techniques are simpler, faster, 

and loss .sensitive to topologies of image structures. 

2.3.1.2 Edge linking techniques 

Following edge detection, edge linking techniciues are used to a.ssemble the edge 

elements into ordered secjuences and filter out spurious edges. Early techniques for 

edge linking and .sequential boundary extraction include heuristic graph searches [3. 

G3. G4] and dynamic programming [2L 65]. The process begins with an initial edge 

element, seciuentially examines neighboring edge elements and gathers ne.xt adjacent 

edge elements satisfying edge linking conditions to form the boundary. The extracted 

bciundaries are gradually extended in the direction that minimizes the cost functions 

of the boundaries [3. 2L 63. 64. 65]. Since in most techniques. 4 or 8 po.ssible linking 

directions are considered for each step, the finest details of extracted boundaries are 
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liinitod by pixels, pixel grids, and pixel diagonals. These techniques do not make use of 

nuilti.scale differential masks but employ local operators of small windows. 

Direct use of imago derivatives for boundary- extraction can be found in the gradient 

ba.sed methods [8. 14. 33. 34, 66] and Laplacian based methods [32. 36. 38. 62]. In 

gradient Ijased methods, gradient magnitude is used as indication of edge strength. 

Edge pixels having the same gradient direction and large enough gradient magnitude 

will be linked together with the current boimdary. The boundary is grown approximately 

in the direc tion perpenclicular to the gradient direction. In the ca.se of broad edges, a 

thinning {iroce.ss is employed to erode edge curves. Xeverthele.ss. the thinned edge pixels 

may l)e displacefl from actual edge locations due to lo.ss of information of edge strength 

during thresholding. In contrast to the gradient ba.sed methods, there is no need for 

edge thinning in the methods ba.sed on zero crossing detection. However, since not all 

zero crossings of image Laplacian correspond to edges, the methods can result in .some 

false boundaries. 

The algorithm proposed by .Murray and O'Malley [66] performs edge enhancement, 

thresholding of the gradient image, and edge thinning. Instead of thresholding the gradi­

ent image to ol)tain an edge map directly, alternate techniques for extracting boundaries 

utilizing maxitiiuni gradient paths have been proposed [9. 14. 34]. In [9]. adaptive thresh-

(jlding was u.sed to extract low magnitude edge pixels that are connected to high gradient 

edge pixels. Goshtasby and Shyu [33] used a minimum spanning tree to group high gra­

dient [)i.xels into boundary support regions. Each maximal path of the tree, equivalent 

to the maxiuuuu gradient path, was then fitted by a rational Gaussian curve. One im­

portant feature that these techniques lack is the direct e.xploitation of gradient direction 

information. The method utilizing both the gradient magnitude and direction in the 

initial step was propo.sed by Burns et al [8] where line-support regions were established 

from groups of adjacent pixels having large gradient magnitudes and similar gradient 

directions. Boundaries were e.xtracted from the least square intensity surface fits of line-

support regions. Improvement in noise immunity and boundary localization accuracy 

can 1k' seen in the algorithm utilizing multi.scale edge information [5. 32. 34. 56. 81]. 

Other edge linking techniques include fuzzy reasoning [45] and particle model [18]. In 

[18]. theal gorithni automatically tracks edge contours using Xewtonian attractive forces 

at edge pixels. However, .several parallel contours around an object as a result of particle 

inotif)n yield poor edge localization and a fusion process is used to fuse nuitliple contours 

into a single contour. 

Since most edge linking techniques are directly designed to deal with edge elements. 
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the finest details of extracted boundaries are limited to the size of an edge element 

u iiich achieves accuracy of at most one pixel, .\lthough some algorithms [33. 38. 58. 78] 

can locate edges with subpixel accuracy in theory, boundary e.xtraction with subpixel 

accuracy is rarely achieved. Eua-Anant [22] and Eua-.A.nant and L'dpa [24] introduced 

the new concept of boundary e.xtraction based on particle motion in a vector field that 

yields results with subpixel accuracy. However, the particle model in [22] is not optimized 

and suffers from an inertial effect causing shape distortion near object corners. 

2.3.1.3 Template matching techniques 

The more rigorous approaches for edge-oriented image segmentation have be(>n im-

Ijlcmciited using template matching. In template matching, the estimated boundary is 

modeled as a deformable curve. The regularity of the estimated boundaries is controlled 

by structures and parameters of the model. Parameters of the model are adjusted to 

maximize the likelihood of the model and image data. Cooper [15] and Cooper et al [IG] 

modeled the secjuence of edge elements in a boundary as a Markov process estimated 

iteratively using a ripple filter. The boundary is deformed along pixel grids in such a 

way as to increase the joint likelihood between the hypothesized boundary and image 

data. Goshtasby and Shyu [33] u.sed the rational Gaussian curve to fit the extracted 

high gradient regions. Ka.ss [41] introduced the spline-ba.sed active contour models or 

snakes. Finding the optimal boundary is equivalent to minimizing the energy function of 

the contour including internal forces imposing contour rigidity and elasticity and image 

f()rcc>s attracting the contour to salient features such as edges in the image. Ronfard 

[70] and Brzakovic [7] propo.sed an alternative region-ba.sed active contour model in 

wliich image forces depend on local regions partitioned by the contour. To prevent the 

contour from being trapped at weak local energy minima. Cohen [11. 12] propo.sed a 

model with an aflditional inflation force. The normalized image force is also u.sed to 

avoid the problem of instability. Gunn and Xixon [35] proposed a dual active contour 

model that prevents the contour from getting stuck at local energy minima Ijy balanc­

ing ex{)ansion and contraction forces between interlinked contours. Lai and Chin [44] 

I)r()posecl the global contour model using a regenerative shape matrix combined with a 

.Markov random field to deal with local deformations. Geiger et al [30] applied dynamic 

programming to the active contour model with nniltiscale boundary e.xtraction capabil­

ity. General concepts, algorithms, applications, and other work on active contours can 

be found in [G], In the.se models, constraints of smoothness and contimiity as well as 

b(jundary topology are inipo.sed without prior knowledge of image data which sometimes 
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Table 2.1 Comparison: template matching versus edge linking. 

Template matching Edge linking 
Computational 
cost 

Inirialization 

Flcxibilitv 

.A.ccuracv 

.\oiso Immunitv 

Boundary cjuality 

High. Optimization of a tem­
plate is computationally inten­
sive. 

Complex. A template requires 
complex initialization proce­
dures. 

Low. Template matching fails 
when the template topology 
does not match the boundary 
topolog>'. 
High. .A.n optimization al­
gorithm employed in template 
matching yields accurate re­
sults. 
High. Due to optimization, 
template matching is more ro­
bust to noise. 
High. The constraints of conti­
nuity and smootlme.ss impo.sed 
on the template ensure that the 
extracted btiundary is always 
smooth and connected. 

Low. Edge linking requires 
a simple search for extracting 
connected components of the 
boundary. 
Simple. The maximum gra­
dient points or zero crossing 
points can be used as starting 
points of edge linking. 
High. Because of the secjuential 
nature of search, edge linking is 
topologically unrestricted. 

Low. Edge linking methods do 
not exploit subpixel optimiza­
tion techniques resulting in less 
accurate boundaries. 
Low. Difference operators used 
for generating edge maps en­
hance noise. 
Low. Edge linking usually re­
sults in broken boundaries. 

are not matched to actual image structures. 

Besides optimization, initialization is also crucial for template matching. In order to 

allow the contour to converge to the image features, the initial contour must be placed 

close to the solution. For example, in region-based models [7, 15. IC. 70]. the initial 

boundary must overlap or encompa.ss the object. In active contour nicjdels, all nodes 

must be placed along the path lying near the desired image feature. In [35]. one contour 

nuist be jjlaced inside the object while another must wrap around the object. Lia and 

Chin [44] initialized the curve using the generalized Hough transform. Cohen and Ron 

[13] initialized the curve by placing endpoints at image features. Due to this constraint, 

in many cases, initialization is performed manually. The comparison between template 

matching and edge linking techniques is summarized in Table 2.1. 



www.manaraa.com

13 

2.3.2 Boundary Representation 

The bouiiclary can be represented in two ways using either an analytic descriptor of 

the boundary commonly used in template matching or a sequence of boundary points 

that are used in edge linking. .\s dimension, size, and complexity of an image increase, 

identifying a suitable number of parameters representing the boundary becomes criti­

cal and cannot be ignored. The efficiency of boundary representation scheme can be 

determined by the number of parameters used in the repre.scntation compared with re­

construction error. Ideally, one desires a boundary representation scheme that uses a 

siuall number of parameters while maintaining structural details of the object boundary 

In template matching, since the template is selected without any knowledge of the 

image feature, the number of parameters is usually fixed and the template can overfit 

or uuderfit the image feature. In other words, the template with the fi.xed number of 

parameters is not guaranteed to be an efficient boundary representation. In addition, 

in template matching, locations of boundary points are optimal along normals of the 

contour and not always optimal along the contour. In contrast to template matching, 

in edge linking, the number of boundary points varies linearly with the length of the 

extrac ted bcjundary. However, in general, these points can be collinear and hence redun­

dant. Therefore, this boundary representation scheme is le.ss efficient. After boundary 

extraction is completed, the boundary information is u.sed for different high level image 

[jroc-essing applications. Construction of the global image l)oimdary model representing 

the overall relation l)etwoen the objects usually requires additional information of the 

ajiplication objectives and interpretation of the retrieved boundary information. In most 

techiiiciues. the organization of the resultant boundaries is left to u.sers. 
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CHAPTER 3. GLOBAL SCALE ANALYSIS 

I I I  goncral. an imago consists of objccts of several scales. Image analysis performed at 

different scales can result in different interpretation of the same image. .\s demonstrated 

in Figures 3.1 and 3.2. images of the same objects ob.served at different resolutions reveal 

different structures. Images of a tree in Figure 3.1 can repre.sent leaves, branches, and 

the whole tree depending on the obser\-ation scale. By analyzing objects at the scales 

starting fnjm the finest scale to the largest scale, the overall relation between objects and 

.scales can he perceived. Global scale analysis is the quantitative evaluation of structural 

details with respect to scales. This chapter is primarily devoted to the development of 

a mathematical framework for global scale analysis. 

3.1 Edge Based Global Scale Analysis 

Detection of objects in an image can be done by ob.serving edges since the e.xistence 

of edges indicates the e.xistence of structures. In .scale-space aiuilysis [32. 52. oG. S3], 

detecticju of dominant structures in a scale-space image is done by ob.serving behavior 

of edges in terms of zero crossings of the second order differential structures at various 

scales. Hcnvever. the methods do not provide a quantitative estimate of e.xisting .scales. 

One way to estimate global changes of edge patterns is to measure statistical parameters 

such as intensity average. root-mcan-.square. and variance of normalized nuiltiscale edge 

images R (IT:.;-. //) as propo.scd in the previous research [22] where the edge characteristic-

scale curves (ECS) are statistical functions of the normalized edge images: 

M e a n d e r )  =  E { c { a :  x .  i j ) ) .  

R M S { ( r )  =  E { r ' { a : x . ! j ) ) .  

S D { a )  =  y j E { c - { a : x ,  u ) )  -  E { c { a \  x .  

The main idea underlying the u.se of statistical parameters of multiscale edge images at 

()|)tinuim scale cr* is that sharpest edges are reflected by the minimum value of statistical 

measures at a'. If the original image contains nuiltiscale structures, embedded scales 
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Figiiff 3.1 A tree observed at different resolutions: (a) original image, (b) 
to (f) smoothed images obtained using the Gaussian smoothing 
functions with a = 1.2.-1.8. and 16 pixels, respectively. 
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(g) (li) (i) 

Figure 3.2 Cluster-like objects observed at different resolutions; (a) original 
image, (b) to (i) smoothed images obtained using the Gau.ssian 
smoothing function.s witli rr = 1. 2, 4. 8, IG. 32, G4. and 128 pixels, 
respectively. 
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are oxprc tecl to bo correlated with local minima of the ECS curves. However, the ECS 

ciirvc^s are seen to be sensitive to noise and are not always successful in detecting all the 

sc ales, accurately. 

In contrast to spatial domain analysis, detection of dominant scales could be effec­

tively obtained by analyzing the signal in frequency domain. The following sections 

describe the frequency domain approach for global scale analysis. Some aspects of mul-

tisc ale representation followed by scale-frequency analysis are given next. 

3.2 Multiscale Representation and Multiscale Differential 

Operators 

Generally, in scale-space analysis, multiscale low pa.ss filtering is used to .separate 

information at different scales. The combination of multiscale low pass filters and single 

.scale differential operators yields multiscale differential operators. In frequency domain, 

multiscale differential operators are band pass filters with variable bandwidth and center 

freciuencies. 

3.2.1 Multiscale Differential Operators 

One-dimensional multiscale differential masks O i { a :  t )  can be expressed by derivative 

(jf the nniltiscale. isotropic, linear, low pa.ss filters, namely the nuilti.scale smoothing 

func t ions  o { a :  t ) :  
d  

O i { c T : t )  =  

L'sing the inverse operation, the multiscale smoothing fimction o { a : t )  can be computed 

from 

o { c r : t )  =  j 6 t { c r ' . t ) d t .  

As in wavelet analysis, the smoothing function o(a: t )  is the scaled version of the mother 

smooth ing  func t ion  o { t ) :  

o { ( T : t )  =  (3.1) 
i i [ a )  ( 7  

where is the normalization factor. For discrete signals, the continuous nuilti.scale 

smoothing function o and differential operators are replaced by the sampled version of o 
and difference operators that approximate an ideal nuithomatical differential operator. 
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3.2.2 Multiscale Representation 

Onivolving the multiscale smoothing kernels of gradually increasing scales with the 

uiKlerlying signal results in a series of smoothed signals. This scale-parameter family of 

smoothed signals is called a scale-space image. 

^): / = 0 -V and ctq < ... < cr.v}. (3.2) 

where a smoothed image p { c r : t )  is obtained by convolving the signal p ( t )  with the mul-

tiscal(> smoothing kernel of scale a: 

p { ( T \  t )  =  [ ) { t )  *  o ( a :  t ) .  

while the scale i)arameter rr, is expres.sed in the exponential form as 

cr, - (Tq • e "  ' 

where rjo G R' and a > 0. In frequency domain analysis, data is represented by the 

Fourier transform: 

=0 V}. (3.3) 

where 

Analysis of nmlti.scale representation requires the o[)erators that are causal, linear, 

and invariant with respect to scale. The choice of scale invariant normalization .schemes 

depends upon type of information to be investigated. In Fourier analysis, frecjuency 

ctjmponents of the signal can be u.sed for de.scribing global patterns embedded in the 

signal. Therefore, global scale analysis can be performed effectively in frequency do­

main. In conjunction with multiscale differential operators, analysis of global scales in 

frecjucncy domain will be discussed next. 

3.2.3 Multiscale Structures 

In general, objects at smaller .scales are parts of objects at larger scales. For exam-

I)le. leaves, roots, and branches form a tree. There are .several models for nmlti.scale 

objects such as fractals and wavelets. A simple model of nuiltiscale objects based on set 

theoretical operations is given here. 

Let D „  i)e a window at scale n  defined as 

Z? = {x : X = 1 if X  G D  otherwi.se x  = 0}, (3.4) 
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an oljjoc t \ at scale n. \ can be obtained using 

=  B „ n  n  n . . .  o ) ) ) ) ) -

(3.5) 

(3.6) 

where represents a set of objects at scale n — 1 spreading over the entire spatial 

domain. In other words, the window is used to "crop" to create the objects 

Eciuatiou 3.G refers to a nuiltiplicative multiscale pattern. This model simplifies 

analysis of the objects in frequency domain since the multiplicative multiscale repre-

sentati(jn in Equation .3.6 corresponds to the convolution between Fourier transforms 

of the c'nv('lo{)es and An example of a nuiltiplicative multiscale object is 

illustrated in Figure 3.3. As seen. Figure 3..3-e is created by masking Figure 3.3-a with 

Figure 3..3-c. Eciuivaleritly. in frequency domain, the spectrum in Figure 3..3-f of the 

multiscale signal in Figure 3.3-e is obtained by convolving the spectrum in Figure .3..3-b 

with the spectrum in Figure 3..3-d which smears the impul.ses in Figure 3.3-b to sine 

functions in Figure .3.3-f. 

3.3 Scale Detection Based on Moments of Multiscale Power 

From the model of multiplicative multi.scale objects, the relation between spectrum 

of multiscale objects and existing scales is expressed by the convolution between spectra 

of objects of different scales. The spectrmn usually contains several frequency lobes 

which can be analyzed using moments of multi.scale spectra. 

3.3.1 New Measure for Scale Anzdysis 

For 1-dimonsional signal f { t ) .  the order moment of f ( f )  is defined as 

where R = ( —oc. x:). If f { t )  is the mass distribution function along <-axis. the center 

of mass of /(/) can be computed from moments by 

Spectra 

(3.7) 

J  ^ r r i i i f j t ) )  
(3.8) 

"'o(/(0) 

(3.9) 
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Figure 3.3 (a) and (h) A square wave signal of period 32 and its Fourier 
transform, (c) and (d) a square wave signal of period 512 and 
its Fourier transform, (e) and (f) a multiseale square wave signal 
and its Fourier transform. 
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Tli(^ contral nionient of order n  is then defined as 

H n =  f  ( 3 . 1 0 )  
J k  

Th(^ sec (jnd order normalized central moment, namely the n o r m a l i z e d  v a r i a n c e ,  is related 

to the spread of f[t) and is given by 

P- = - (3.11) 
f ' Q  

^  I n i f  - f ) ' - f i n d t  

In frcfiueiicy domain, for a signal /(/) with Fourier transform F(a-'). the center fre-

ciuenc-y U of a power spectrum |F(u,-)|-. — oc < u: < dc. is given by. 

mi(ir(:^-)|-) 
mo(|F(u,-)r-^) 

(3.14) 
f ^ \ F ( u ; ) \ - ^ d u j  

Fcjr all real signals, the center frequency u: is always zero because the power spectruni 

of a rc>al signal is always symmetric with respec t to the zero freciuency. From Ecpiation 

3.12. the normalized variance p- of the power spectrum is given by 

P  ( i F ( ^ ' ) i  )  =  M - M  
//o( F(^' -) 

ja(u;-ll;)-|F(:^)|^rL 

/j,|F(a.-)r^r/:.-

For a real signal, p -  becomes 

(3.1C) 

2 n r f  \ i - 2 \  / o i - \  p  (|F(a.-)| ) = • (3.10 
Jr i ) I 

For the discrete signal, integrations in Ecpiation 3.17 are replaced by the summations: 

/>-(|F(:.-)|^) = (3.18) 
T .I iF(a.-,)|-

when> uj, G [ — .Applying Ecpiation 3.17 to the scale-frequency representation 

P ( < t :  u : ) .  p -  i s  a  f u n c t i o n  o f  a :  

p  |P : ( t )  - -  —. (3.19) 
//o( P(o-:a.-) -
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Consider a signal p { t )  with spectrum. P { u : )  = c .  The scale-frequency representation 

using the multiscale kernel o((t; t) is obtained by 

P { a : u j )  =  P ( u j )  •  (3.20) 

=  c - ( 3 . 2 1 )  

where is the spectrum of the kernel o(cr: t ) .  .\pplying Equation 3.19 to Equation 

3.21. we get 

= "'!!'•'t!""!':; (3.22) 
/io(|r • t&((T:a,-)l-) 
//•_,(i<&(q-:^-)r-) 

//o(i<&(rT:u,-)P) 
= (3.24) 

wliich is ecfuivalent to the normalizetl variance of the power spectrum <&(o'::i.') of the 

kerne l  o { a :  t ) .  

DeKiiing the [jower spectrum normalized variance ratio (PSW'R) as 

where P [ r r :  j j )  is the spectrum of the niulti.scale representation p { n :  t )  of the underlying 

signal /;(/) and is the spectrum of the multiscale kernel oia-.t). we see that 

PSXX'R = I when P { u : )  is constant, i.e.. if the signal is composed of just white noise. 

PSXX'R = I. lu contrast, if P{uj) is not constant hut has a peak at u:'. we have 

p'{\P\-:'r) < if I:.-"! <'t) 

and 

pH\P\':a) > if > p(|<&r^: a). 

This ini[)lies that PSW'R 7^ 1 indicates the presence of a scale or feature in the image. 

If/;((/) is of interest, we can further define the differential power spectrum normalized 

variance ratio (DPSN\'R) as 

D P S \ \ ' R { P : a )  =  P S \ \ ' R { P t : a )  (3.2G) 

= (3.27) 
i H r n ' - T )  ' '  

where P i { a : - ^ )  is the spectrum of the nuiltiscale differential representation p , { a : t )  ofp(/) 

aufl is the spectrum of the multi.scale (lifferential kernel Oi{(y. t). .Vote that the 

normalization factor in Equation 3.1 does not affect the PSW'R and DPSW'R. 
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Consider the case of an ideal rnultiscale low pass filter o ( a :  t )  with the cutoff frequency 
, . _ i. 

I 0 otherwise. 

The iiornializod variance of is given by 

J —jta-V 
2  

3 
1 

3o-' • 

u hich is a iiioriotonically decreasing function of cr. Figtires 3.4-a and 3.4-b show |<&((7:a<')|-

wirh = 2 and /•;-(|<I>(<t:u.')| '). 

Consider the signal p { t )  with its power spectrum [/^(a;)]- given by 

.) J 1. |u,'| G [o-'i-U ] where 0 < >i,'i < iij-j < u-'.-j < 

I U otherwise. 

.Applying o { n : f  )  to /j(/) yields a rnultiscale smoothed signal 

l ) { ( 7 :  t )  =  p i t )  *  o { a - .  t )  

witli the corresponding [)ower spectrum 

\ P i a : ^ - ) \ - '  =  \ P ( u ; ) \ - \ < l > { c r : u . - ) \ .  

The normalized variance of \P{cr-. uj)\- is given t)y 

1. for iiSf ^ ^*1-

-r L J - y  — ^'l) 

2. for iCf UJ.\. 

— iij[\ -j- iC'2 — ^'l) 

•3. for 

3 (^'2 — ) 
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4. for I <[ ujf <C! UJ2* 

p ' i \ P i a : u . ' ) n =  
•Ji^V ~  ̂ ' i )  

•5. for JJr < JUi. 

p \ \ P { c j : - ^ ) \ ' ) = Q .  

Figures 3.4-c and 3.4-d show \ P { a : i j ) \ -  and f r { \ P { a : u : ) \ - )  with = 

3. and ^'i = 4. Figures 3.4-e and 3.4-f show tlie corresponding PSW'R graplis as 

funcrions of rr and respectively where there exist 2 local minima chie to frequency 

lol)es of \P{u:)\-. This example shows that local minima of the PSW'R graph indicate 

the existence of frequency lobes in the power spectrum of the signal. .Moreover, in Figure 

3.4-f. local minima of P5.V\ /?(u-v) occur at a-v = and a-v > ^'1 which indicates that 

the values of jJc local minima of the graph PSW'R are ideal for .separating frequency 

lobes. For the application of multi.scale edge detection, the values of cr at local minima 

of the DPSX\'R graph can l)e u.sed for separating edges of different .scales. 

3.3.2 Experimental Results: Global Scale Analysis of 1-Dimensional Mul-

tiscale Edge Signals 

In this section, several 1-dimensional sinuilated signals are analyzed using the pro-

I)osed method and is compared to the edge characteristic-.scale (ECS) analysis introduced 

in the previous research [22]. In all examples, the multiscale Gau.ssian differential kernel 

is used; 

with the corresponding Fourier transform: 

( l > i ( a : u : )  =  j u s a  - . 

Figure 3.5 illustrates the e.xaniple of a rruiltiplicative double .scale pattern where the 

signal in Figure 3.5-a is the multiplication between square waves of [)eriods IC and 

128. Figure 3.5-b shows the corresponding magnitude spectrum. Figure 3.5-c shows the 

ECS curves where A\'G. RMS, and SD denote average, root-mean-.square and standard 

deviatifju res[iectively. The graph DPSW'R is shown in Figure 3.o-d. The values of 

(7 obtained from both global scale analysis .schemes are displayed in Table 3.1. .A.S 

seen in Figure 3.5-b. the corresponding spectrum consists of several frequency lobes due 

to hariHonic- terms and signal aliasing. Most of the graphs contain two distinct local 

minima reflecting two e.xisting scales while the SD(cr) curve has additional spurious 
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Figure 3.o Double .scale signal: (a) original .signal, (b) Fourier transform 
magnitude, (c) ECS curves, (ci) DPS.W'R graph. 

Table 3.1 Global .scale analysis of the signal in Figure 3.5. 

Scale 1 Scale 2 
a  at local minima of A \ ' G { ( 7 )  0.C6 6.85 93.56 
a  at local minima of R M S { a )  0.64 6.21 
a  at local minima of S D { ( t )  0.32 0.69 5.73 60.52 
a  at local minima of D P S N \ ' R { a )  1.41 12.41 
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local minima. From Table .3.1. all schemes detect both e.xisting .scales. The values 

of (7 obtained from ECS analysis arc relatively smaller than those obtained from the 

fre([uency domain approach. Figure 3.G shows smoothed signals at two scales obtained 

using the nniltiscale Gau.ssian smoothing kernels with the values of a selected from local 

minima of the DPSXX'R graph. While the signal in Figure 3.G-a represents the pattern 

with finf> details, the signal in Figure 3.G-1) repre.sents coarse structures. 

The ne.xt e.xample shown in Figure 3.7 is the multiplicative triple .scale signal gen­

erated by the product lietween .square waves of periods IG. 128. and -512. Tables 3.2 

shows the values of a obtained from both gloijal .scale analysis schemes. Similar to 

the {)revious e.xample. the spectrum in Figure 3.7-ij consists of .several frequency lobes. 

Clearly. 3 distinct local minima can be seen in all ECS and DPSW'R curves except 

the edge average-scale curve. These .3 peaks are consistent with 3 existing scales of the 

signal. The smoothed signals obtained using the rnultiscale Gaussian smoothing filters 

with a sel(>( ted from the local minima of the DPSW'R graph in Figure 3.7-d are shown 

in Figiuv 3.8. 

The next e.xample shown in Figure 3.9 is the degraded version of the signal in Figure 

3.7-a corrtipted by additive white Gaussian noise .V(0.0.o) (signal to noise ratio —3.70 

dB). The values of a obtained from global .scale analysis .schemes arc shown in Table 

3.3. .A.S seen. ECS analysis method yields .several false indications of scales introduced 

l)y noise while no spurious scale is detected using the DPSW'R. This e.xample shows 
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Figure 3.7 Triple .scale signal: (a) original signal, (b) Fourier transform 
magnitude, (c) ECS curves, (rl) DPSXX'R graph. 

Table 3.2 Global scale analysis of the signal in Figure 3.7. 

Scale 1 Scale 2 Scale 3 
(7 at local minima of A \ ' G { a )  0.G6 G.So 
< 7  at local minima of R M S { a )  0.G4 G.21 41.54 
a  at local minima of S D i a )  0.50 5.97 42.37 
a  at local minima of D P S . \ \ ' R { a )  1.41 12.66 GC.82 
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Figure 3.8 Sriiootlied signals of the signal in Figure 3.7-a obtained using 
inultiscale Gaussian smoothing filters with a selected from local 
minima in the DPSWR graph; (a) cr = 1.41. (b) a = 12.00. (c) 
a = 00.82. 
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that tho noise has little effect on the DPSW R. This is because frequency components of 

iKjiso spreading uniformly over the entire spectrum is averaged out in the computation of 

moments of the spectrum and hence has little effect on the DPSXV'R. For ECS analysis, 

normalization factors are based on strength of the strongest edges which depend on 

data itself and cannot be predicted. Therefore. ECS analysis is less reliable. Figure 3.10 

shows smoothed signals obtained using the Gaussian smoothing filters with a obtained 

fnjin local minima in the DPSXX'R graph in Figure 3.9-d. In summary, global scale 

analysis based on the DPSX\'R is a very robust method. 

3.4 Extension to Multidimensional Signals 

In order to extend the proposed global scale analysis method to images, several issues 

must he taken into account. First, the operator must be homogeneous and isotropic, 

i.e.. translation invariant and directional invariant. In the frequency domain, this re-

ciuirement is equivalent to rotational invariance. In continuous mathematics, the .V-

dimensional multiscale differential mask can be e.xpressed as the convolution of multi-

scale isotropic- smoothing kernel o{a\Xi. r.v) and directional differential operators 

7^ as follcnvs: (is ̂ 

r.v) = -^*o((7:.ri ry). i = 1 V. (3.28) 
a x ,  

where Oj-, is the multiscale differential mask in x ,  clir(>ction. Examples of continuous 2-

dimensional multiscale differential masks and c-orresi)onding multi.scale smoothing func­

tions are shown in Table 3.4. In the discrete ca.se. the continuous multi.scale smoothing 

kernel is replaced by its sampled version and the directional differential operator is n^-

placecl by the directional difference operator as demonstrated by the examples in Figure 

3.11. Figure 3.12 shows e.xamples of nmlti.scale differential masks and the corresponding 

multiscale smoothing functions. 

In general, in the .V-dimensional spatial domain, the position is e.xpressed in Carte­

sian coordinate i)y a vector x = {x, J".v). Eciuivalently. the frequency component is 

expressed by the frequency vector -Jj = (», u \ )  where u, represents the frequency 

measured in j-,-direction. It can be seen in Table 3.4 that, due to the constraint of 

isotropy imposed on the nudtiscale smoothing function, o c-an be written as a function 

of a single variable r where r = i/x- 4- y '. In general, the .V-dimensional multiscale 

isotropic smocithing function can be written as o{(t: r) with the center at r = 0. where 

r = yJx'-[ -i- . . .  -r x-\- is the spatial radius. Similarly, the Fourier transform of an i.sotropic 
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Figure 3.9 Triple .scale signal with noise: (a) clcgradecl version of the sig­
nal in Figure 3.7-a with SXR —3.70 dB. (b) Fourier transform 
magnitude, (c) ECS curves, (d) DPSW'R graph. 

Table 3.3 Gloi)al scale analysis of the signal in Figure 3.9. 

Scale 1 Scale 2 Scale 3 
(T at local rnininui of ,-H'G'{c") 0.40 l.il 1.52 3.3G 6.09 6.-59 11.47 46.78 
(7 at local minima of R M S { a )  0.34 1.11 1.49 5.97 6.46 7.27 12.17 44.97 
(7 at local minima of S D { G )  0.32 1.07 1.46 5.73 13.98 40.73 
( 7  at local minima of D P S S V R { ( T )  1.93 16.38 69.52 
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Figuro 3.10 Smoothed signals of the signal in Figure 3.9-a obtained using 
multiscale Gaussian stnoothing filters with a obtained from lo­
cal minima in the DPSX\'R graph: (a) a = 1.93. (h) g = 1G.38. 
(c) G = G9.52. 
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(a) (b) 

Figure 3.11 Example of differential ma.sks (a) in .r-direetion and (b) 
y-direction. 

.smoothing function o can be expre.ssed a.s /?) with the center frequency at R = 0 

where R = uj + ... + uy refers to the frequency radiu.s. However, the Fourier trans­

form of the multi.scale directional differential mask. o^. (cr: j-j.... ..r\). is given by 

<l»x,(cr:(zi tlx) = T{o^,{a:.ri x.v)} (3.29) 

= ux). (3.;50) 

where (/i u\) is the Fourier transform of the multi.scale smoothing function 

o(a:./ i rv). Due to the factor on the right side of Equation 3.30. is not 

isotropic. One can create an operator with rotational invariance property as follows. 

Consider rhe power spectrum function l^'j- given below: 

+ + (3.31) 

= + + (3..32) 

= R' • |<&|-^. (3.33) 

Since |ft|- is rotationally invariant. is also rotationally invariant and can be expressed 

as a function of R. Moreover, the multiplication by R' on the right hand side also results 

in another desirable property of |4'|" for global .scale analysis, namely localization with 

respect to R. Figure 3.13 illustrates examples of 2-dimensional lv&|- generated from tlie 

Gau.ssian smoothing functions of different scales. As demonstrated by images in Figures 

3.1.3-a an<l 3.1.3-c. |^|~ is refered to as the rniilti.'icale power ."ipectnirn riny (MSPSR) of 

order 1. or simply, the ring. Varying the .scale a creates the rings of different diameters 

resulting in the property of localization with respect to R. 
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Table 3.4 2-Dimonsional nuiltiscalc differential masks and nmltiscah 
smoothing functions. 

r .  u )  o ( c r :  i \  i j )  

Gaussian 

G\VLM\-

Distance' 
2s 

• C -It,-

J " V * sJ t' --U' » _> n -
T - f  If f r liT-  tC V ^  ) 

•J-a- X'-y- '-(T- y/T-~y- "-0 n.=0^-'~ 

Moment'^ 
— 2.r —2// —(•'•" + //") + C 

" J 
-f C  

\ J  J-- ! / -  s j  •r- - .V-

' C is a constant such that mino(<t:x./y) = 0. 
^ (.r./y) G {(j-. y): v/x- + y- < r} where r  is the radius of the mask. 
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Figure 3.12 Examplc.s of 2-crnnerisional iniiltiscalo clifferontial masks and 
iniiltiscalo snioothing functions: (a) the Gaussian differen­
tial masks in r-dircction and (b) the Gaussian function with 
a = 20. (c) the G\VIM\" mask [22] in x-direction and (d) the 
corresponding multiscale smoothing function of the G\VIM\' 
mask with a = 20. 
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Figure 3.13 Magnitude images and surface plots of tlie inultiscalo Gaussian 
power spectrum rings: (a) and (b) a = 1. (c) and (d) a = 2. 
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3.4.1 Application of Multiscale Power Spectrum Rings to Global Scale Anal­

ysis 

The niultiscalo power spcctrum ring possesses several properties including localiza­

tion with respect to scale and frequency radius and rotational invariance. Using the 

MSPSR as the kernel, the generalized A'-dimensional global scale analysis method based 

(jn the DPS.W'R is established as follows. 

For an .V-diniensional signal /(j'l..... x.v). the generalized moment of order { i i i  n \ )  

is expressed as 

, , V  =  /  S x ) d x i d x 2  •  •  •  d x y .  
i R V  

where R = ( — oc. oc). Similar to the 1-dimensional case, the center of mass (xi xy) 

in the .V-diniensional space is computed from 

_ 1=1 0 x ^  =  . 
rriQ 0 

L'sing (Ji Jv) tis the reference point, the central moment, f t .  of order { r i i  r i  y) 

is given by 

" V = / (J"i - ̂ i)"' • (-^"2 — ^2)"" • • • (-r.v - • /(j"i X y ) d x i d x - 2  •  •  d x y  

The normalized central moment, r j .  of order { r i i  r i \ )  is defined by 

^'0 0 

In the .V-dimensional invariance theory [73]. there are several combinations of nor­

malized central moments that generate moments which are invariant to translation, 

rotation, and scale change. One invariant moment is the normalized variance p-: 

P ~  = i h . Q  0 + n o . 2  0 + //o.o 2- (3-34) 

whic h can be e.xpanded as 

 ̂ _ /R.V((-^-I -  Iri)-  -f-  •  •  •  - r  (J:.V - x s ) - ) f { x x  x s  ) d x \  •  •  •  d x s  

f w  • r \ ) d x i  •  -  •  d x x  

_ /R.V r ' - f { x i  X x ) d x i  •  •  •  d x x  

/ r v  / ( j - i •  •  •  • .  j - \ \  ) d x i  •  •  •  d x x  

In fact, /r measures the average square radius with respect to the center of 7". 
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III the global scale analysis of a 1-climensional signal, p-{\P\-\a) is compared with 

/•j~( |<&|-: fT) to obtain the PSW'R. Similarly, in .V-dimensional space, the PSWR is 

defined by 

,3.35, 

whore P  and <I> are the spectra of the signal p { x )  and the multiscale kernel o { x )  respec­

tively. For global scale analysis of differential signals. ^ is replaced by the multiscale 

power spectrum ring |*^|- in Equation 3.33 resulting in the DPSW'R: 

= (3.36) 

The scale information can be retrieved by observing local minima of the graph of DP-

S.W'R vs (T. Due to rotational invariance. both and |^|" have center frequency 

vector U = (77i... .. u.v) at (0..... 0). For a real signal f{x). |F(J)|" also has zero center 

frequency. Therefore, p- in Equations 3.35 and 3.36 can be computed from 

2 n r - ,  + ... -i- •  • • d a y  
l> (I^ ( " 1  ".v)| ) = tfT 1 • 

Jr v  ".v) | -«"l  • • • f l l t x  

For a discrete case, the integration in Equation 3.37 is appro.ximated by sununation. 

3.5 Experimental Results of Global Scale Analysis of 

2-Dimensional Multiscale Edge Signals 

This section presents examples of global scale analysis of simulated and real images. 

The 2-dimensional multi.scale smoothing kernel used in this e.xperiment is the nuiltiscale 

Gau.ssian function defined as: 

O { ( T : X . I J )  = • (3.38) 
J , n  G "  

with the corresponding Fourier transform 

T ~ ( u "• -i- f " j 
u. r) = c •: . (3.39) 

The associated multiscale Gaussian power spectrum ring is given by 

^^(ar^.f)!- = («-+ (3.40) 

= (3.41) 

where R  =  \ / u -  -I- < • - .  
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To oliniinate the need for computing the Fourier transformation. is generated 

directly from Equation 3.41. The DPSX\'R is calculated according to Equation 3.36 

and the edge charcicteristic-scale analysis is performed using the multiscale normalized 

gradient magnitude imago, e. defined by 

e { a : x . i j )  =  p ^ { a \  x .  y ) ' -  +  p , j { a :  x .  u ) ' K  

where pj: and py are the first order derivatives of the smoothed image p{a:x.ij) in x  and 

// directions and the normalization factor n is given by 

n = iiuo: \Jpj:{a-. x. y)- + p„(cr; x. if]'-. 

The edge characteristic-scale functions are computed as follows; 

A\ 'G{(T )  = ^ Ve(cr: j./y). 
^ X.<J 

RMS{(7)  =  I ^  ^C-{ (7 :X .Y) \ ^ .  
X .17  ̂y 

SD{A)  =  \RMS{A) ' -  -  A\ -G{N) ' ' \ ^ .  

where .V x M  is the image size. In all e.xperiments. local minima in the curves correspond 

to the scale values a. 

3.5.1 Simulated Images 

The first two examples show two types of nuilti.scale structures, a cluster of objects 

disijlayed in Figure 3.14-a and a snowflake shown in Figure 3.16-a. The cluster object 

can be modeled using the multiplicative model propo.sed in the previous section while 

fractal ba.sed method is suitable for modeling the snowflake. 

The image in Figure 3.14-a has two scales, the small scale of circles and the large 

scale of the hexagonal cluster. Table 3.5 shows results using the different global scale 

analysis technicjues wliere two scales are detected. Clearly, there are two local minima in 

each of the ECS and DPSXV'R graphs. Edge images with a selected from h)cal minima 

of S'D((7) and DPS.\'\'R{(7) are displayed in Figure 3.15. Since the values of cr obtained 

from local minima of SD(A) are too small to .separate the 2 different scales, some small 

details appear in the large scale edge image in Figure 3.15-b. The most accurate edge 

images in Figure 3.15 are obtained using the local minima of the DPSW'R graph. For 

example, as illustrated by Figure 3.15-d. small scale edges are completely removed while 

rhe hexagonal outline is well pre.served. 
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Figure 3.14 Double scale image: (a) original image, (b) log rticignitude of 
the Fourier transform, (c) ECS curves, (d) DPSW'R graph. 

Table 3.5 Global scale analysis of the image in Figure 3.14. 

Scale 1 Scale 2 
(7 at local minima of .4\'G(o-) 0.62 4.07 
a at local minima of RMS{A)  0.34 3.77 
a at local minima of SD{A)  0.32 3.77 
a at local minima of DPSN\  'R{ct)  0.85 G.27 
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Thr siiowfiake shown in Figure 3.16-a is a triple scale tree structure. The global 

scalcs detected are summarized in Table 3.6. As seen, only one scale is detected using 

A\ 'G(a-) while the rest of the graphs detect all three scales. Edge images with a selected 

from local minima of SD{a) and DPSS\ 'R{a) are displayed in Figure 3.17. Clearly, 

while edge images in Figures 3.17-a to 3.17-c obtained using a from the local minima of 

SD{a) arc too detailed, results presented in Figures 3.17-d to 3.17-f obtained using the 

loc al minima of the DPSW'R graph repre.sent structures at all 3 sciiles. 

3.5.1.1 Effect of spatial separation of objects 

The next three examples in Figures 3.18 through 3.20 show the effect of spatial 

distance between objects in global scale analysis. In these examples, all images have 

144 small scjuares of size 4x4 pi.xels while the number of global scales are controlled 

by varying the separation between the 4x4 pixel squares. For example, with 2 pixel 

separation in Figure 3.18-a. the image contains only two scalcs. that of the small square 

and the whole cluster. The third .scale is introduced by increasing separation between 

the groups of 2 x 2 scjuares as seen in Figures 3.19-a and 3.20-a respectively. In Figure 

3.18. both scales are detected by all the global scale analysis tc»chnicjues as shown in 

Table 3.7. In Figure 3.19. the separation distance between the 2 x 2 squares increases 

but is not enough to yield the ne.xt .sciile. and hence is not detected by any of the 

t e c - h n i c [ u e s .  . A . s  s h o w n  i n  T a b l e  3 . 8 .  a l l  E C S  m e t h o d s .  . 4 \ ' G ( f T ) .  R M S { c r ) .  a n d  S D { a ) .  

miss the largest scale while the method ba.sed on DPSW 'R{a) mis.ses the middle scale. 

However, a change in the slope of the DPSW'R graph can be seen around a = 3.G. 

In the grai)h of Figure .3.19-e. where c is the natural scale parameter, 

c =  I n  <7. the additional local maximum point can be seen at a  — 3.0. This feature is 

due to the appearance of the middle scale. Hence, the presence of weak scales can be 

detected using the derivative /?(-))_ 

^  W V d k  

. 1  I  •  •  f  ( H O P S W R l z ) )  d ( D r S \ \  m : ) )  ^  n  CT at local minima of j: > 0 

or (3.42) 
_ 1 I • r ' H O P S . W  l H z ) )  d { D r S S V U ( : ) )  ,  n (7 at local maxima of < 0 

.As the the .separation distance increases, the middle .scale bec-omes more distinct 

as seen in Figure 3.20-a. In this case, all three .scales can be detected by the graphs 

SD{rr) and DPSW R{a). Corresponding changes in can aLso be observed 

in Figurc\s 3.18-e. 3.19-e. and 3.20-e where the middle scale is indicated at the local 

e.xtretna at cr = 3.62 in Figure 3.19-e. Edge images using a listed in Table 3.9 are shown 
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Fi"iirr' 3.1-5 Edge images with a obtained from Table 3.5: local minima 
of 5D(<T): (a) a = 0.32. (b) a = 3.77: local minima of tho 
DPSWR graph: (c) a = 0.85. (d) a = 6.27. 
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Figure 3.16 Triple scale image: (a) original image, (b) log magnitude of the 
Fourier transform, (c) ECS curves, (d) DPSXVR graph. 

Table 3.6 Global scale analysis of the image in Figure 3.16. 

Scale 1 Scale 2 Scale 3 
a  at local minima of A \ ' G { a )  0.64 
C T  at local minima of R M S { a )  0.32 3.10 7.34 
( 7  at local minima of SD{a) 0.32 3.35 3.92 8.25 
a  at local minima of D P S y \  ' R { ( T )  0.88 4.07 11.75 
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(cl) (e) (f) 

Figure 3.17 Edge images with a obtained from Table 3.6: local minima 
of SD{<7): (a) cr = 0.32. (b) a = 3.35. (c) a = 8.2-5: local 
minima of the DPSW'R graph: (d) a = 0.88. (e) a = 4.07. (f) 
(T = 11.75. 
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Figaro 3.18 (a) Original image, (b) log magnitude of the Fourier tran.sform. 
(c) ECS curves, (d) DPSXVR graph, (e) • 
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Figure 3.19 (a) Original image, (b) log magnitude of the Fourier transform, 
(c) ECS curve.s. (d) DPSXX'R graph, (e) . 
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Figure 3.20 (a) Original image, (1>) log magiiitude of the Fourier transform, 
(c) ECS curves, (d) DPSX\'R graph, (e) . 



www.manaraa.com

48 

Table 3.7 Global scale analysis of the image in Figure 3.18. 

Scalo 1 Scale 2 
(7 at loca l  m inima of A\'G{A) 0.32 0.64 2.65 
A at local minima of RMS{A) 0.32 2.35 
(7 at local minima of SD{A) 0.32 2.26 
A at local minima of DPS.WR{A) 0.32 4.24 

Table 3.8 Global scale analysis of the imago in Figure 3.19. 

Scale 1 Scalo 2 Scale 3 
fT at local minima of .4\'G'(<7) 0.67 2.65 4.24 
a  at local minima of R M S { a )  0.32 2.98 
a  at local minima of S D { a )  0.32 3.10 
( 7  at local minima of D P S S \  ' R{ ( t )  0.32 7.05 

,.r d{DrssVH[ z ) )  
^ w f t i k  3.62 

Table 3.9 Global scale analysis of the imago in Figure 3.20. 

Scale 1 Scalo 2 Scalo 3 
(T at local minima of .41'G'(o-) 0.64 7.94 
CT at local minima of RMS{(T) 0.32 6.78 
(T at local minima of SD{A)  0.32 1.65 1.79 5.58 
(7 at local minima of DPSW 'R{FT)  0.34 2.65 8.93 

of ^ 
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Figure 3.21 Edge images with a obtained from Table 3.9: local minima of 
SD{cr): (a) a = 0.32, (b) a = 1.65. (c) a = -5.-58: local minima 
of the DPSWR graph: (d) a = 0.34. (e) cr = 2.Co. (f) cr = 8.93. 
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Figure 3.22 (a) Original image, (b) log magnitude of the Fourier transform, 
(c) ECS curves, (d) DPSW'R graph. 

Table .3.10 Global scale analysis of the image in Figure 3.22. 

Scale 1 Scale 2 Scale 3 
(T at loc-al minima of .4\'G'(cr) 0.32 0.47 0.53 
(7 at local minima of RMS{A)  0.32 2.98 
a  at local minima of SD{A)  0.32 2.98 
a  at local minima of DPSX\  R{(T )  0.7.5 6.-52 27.84 
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Figure 3.23 Edge images with a obtained from Table 3.11: local niiniiua 
of SD{a): (a) a — 0.32. (b) a = 2.98: local minima of the 
DPSW'R graph: (c) a = 0.75. (d) a = G.52, (e) <t = 27.84. 
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AVG 
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SD 

Cf 

(o) 

Figaro 3.24 (a) Dcgraclod imago of the image in Figure 3.14-a with SXR 
= 2. (b) intensity histogram, (c) log magnitude of tlio Fourier 
transform, (d) ECS curves, (e) DPSW'R graph. 
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Table 3.11 Global scale analysis of the image in Figure 3.24. 

Scale 1 Scale 2 Scale 3 
a  at local minima o i  A \ ' G { a )  0.44 2.54 3.62 7.94 
a  at local minima of R M S  ( a )  0.42 2.54 
a  at local minima of S D { a )  0.40 1.12 1.47 2.18 
rr at local minima of DP5.Vr/?((T) 1.72 7.34 27.84 

'o 

(b) 

(C-) 

Figure 3.25 

m  

i d )  (0) 

Edge images with a obtained from Table 3.11; local minima 
of SD{(j): (a) a = 1.47. (b) a = 2.18; local minima of the 
DPSW'R graph: (f) a = 1.72. (g) a = 7.34. (h) ct = 27.84. 
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(^) (f) 

Figiiif 3.2G Degraded images of the image in Figure 3.22-a and the corre­
sponding DPSW'R cnrves: (a) and (b) SXR = 1. (c) and (d) 
SXR = 0.5. (e) and (f) SXR = 0.25. 
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in Figure 3.21. .A.s in Figure 3.14. edge images in Figures .3.21-d to 3.21-f with a obtained 

using local minima of the DPSXVR graph are the most accurate. 

3.5.1.2 Effect of Noise on Global Scale Analysis 

The ne.xt three examples in Figures 3.22. 3.24. and 3.2G demonstrate the effect of 

noi.se on the global scale analysis. In these examples, signal to noise ratio is defined as 

^ ^obj Ibgnd 

^ l i O l S V  

whore I^hj nnd hgnd ^ire object and background intensities and is standard 

fleviation of noi.se. The image in Figure 3.24-a is the noisy version of the image in 

Figure 3.22-a degraded by additive white Gaussian noi.se with SXR = 2.0. The uni-

moclal histogram of the degraded image shown in Figure 3.24-b illustrates that object 

and background pixels are heavily corrupted by noise and cannot be separated using 

liistograni analysis. Tables 3.10 and 3.11 report the scales detected by the 4 methods. 

DPSWRia) detects all three scales in Figure 3.22 while the ECS methods miss the 

sec-oiid and third scales. Edge images obtained using rr at local minima of SD{a) and 

DPS.WR{a) are sliown in Figure 3.23. Clearly, edge images in Figures 3.23-c to 3.23-e 

are best at presenting structures at 3 .scales. Table 3.11 reports scales detected in the 

iioi.sy image in Figure 3.24-a. In this case, the ECS methods still mi.ss the largest scale 

while there are several fal.se indications of smaller scales. Remarkably, in this e.xample. 

the most accurate results are obtained using the DPSW R graph where all .scales are 

detected without any false indication. This is due to the fact that frecjuency components 

of noi.se distributed over the entire spectrum have little effect on tlie computation of the 

second order normalized central moment of the spectrum of the image. This example 

indicates the superior performance of the DPSW'R ba.sed global scale analysis. 

In the ca.se of very low signal to noise ratios, the method ba.sed on DPSX\'R still per­

forins consistently as demonstrated in Figure 3.2G where DPSW'R curves corresponding 

to all degraded images with various signal to noise ratios reveal similar patterns. In all 

examples in Figure 3.26. 3 e.xisting .scales are detected even thougli objects in images can 

l)arely be seen. The results of global .scale analysis at various signal to noise ratios are 

summarized in Table 3.12. Xote that, as signal to noise ratio decreases, false indications 

of global scales are produced. 
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Table 3.12 cr at local minima of DPSXVR curves in Figures 3.22. 3.24. and 
3.26. 

Scale 1 Scale 2 Scale 3 
Figure 3.22-d (SXR = x;) 0.75 6, ,52 27.84 
Figure 3.24-e (SXR = 2) 1.72 7. .34 27.84 
Figure 3.26-b (SXR = 1) 2.01 7. ,94 30.11 
Figure 3.26-d (SXR = 0.5) 0.42 2.18 8. .25 38.10 
Figure 3.26-f (SXR • = 0.25) 0.36 2.18 8. 25 21.16 42.86 

3.5.2 Results of Implementation on Natural Images 

The images of living things such as trees and cells are good examples of natural 

multiscale structures. The first example is an image of a tree with 3 distinct scales as 

shown in Figure 3.27-a. Results obtained using the 4 methods are summarized in Table 

3.13. It is seen that only DPSXVR ba.sed method detects all three sc-ales. Edge images 

with (7 obtained from local minima of SD{a) and DPSX\'R{a) are shown in Figure 

3.28. .A.S demonstrated by Figures 3.28-c to 3.28-e, edge images with a obtained from 

DPSWR{rT) clearly represent structures at 3 .scales. The ne.xt e.xample in Figure 3.29-

a is an image of bone marrow cells. Unlike previous examples, the number of scales in 

rhis image is not easily to discern. Table 3.14 displays the corresponding results. Edge 

images with rr obtained from local minima of SD{a) and DPSX\ R{a) are displayed 

in Figure 3.30. .A.s seen in Table 3.14. all methods detect Scales 1 and 2. However, only 

the edge image in Figure 3.30-e with a = 2.09 obtained from the local minimum point 

of DPS.\'\'R{(T) clearly exhibits boundaries of the white cells. 

The next example shown in Figure 3.31-a is the image of a printed page where the 

scales range from characters and lines to paragraphs and columns. In terms of separation 

distances, the number of scales in this example is not obvious. However, from the results 

disi)layed in Table 3.15. scales of characters, paragraphs, and columns are detected using 

the DPSXX'R and graphs. Edge images at detected scales are shown in 

Figure 3.32. The last example shown in Figure 3.33-a is the CT scan of a cylindrical 

soil sample whore grey areas repre.sent soil porosity. Table 3.16 shows results of global 

scale analysis where 3 scales are detected from the DPSXX'R and graphs. 

Clearly, structures at different scales including details of soil porosity are reflected by 

edge images in Figure 3.34. 
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Fi"uro 3.2'i (a) Original image, (b) log magnitude of the Fourier transform, 
(c) ECS curves, (d) DPSWR graph. 

Table 3.13 Global .scale analysis of the image in Figure 3.27. 

Scale 1 Scale 2 Scale 3 
a  at local minima of .4\ 'G'(cr) 0.G2 0.82 
(T at local minima of R M S i a )  0.33 0.57 0.95 
a  at local minima of S D i a )  0.32 0.53 1.03 10.44 
a  at local minima of D P S . \ \ ' R { a )  0.42 2.45 14.86 
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(cl) (o) (f) 

Figure 3.28 Edge images with a obtained from Table 3.13: local minima 
of SD{A): (a) A = 0.53. (b) A = 1.03. (c) cr = 10.44: local 
minima of the DPSX\'R graph: (f) cr = 0.42. (g) a = 2.45. (h) 
a = 14.86. 
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Figure .3.29 (a) Original imago, (b) log magnitude of the Fourier transform, 
(c) ECS curves, (d) DPSW'R graph. 

Table 3.14 Global scale analysis of the imago in Figure 3.29. 

Scale 1 Scale 2 Scale 3 
C7 at local minima of A\  'G{A)  0..33 8.25 18.81 
a at local minima of RMS{(T )  0.32 7.94 26.77 
(7 at local minima of SD(a) 0.32 7.63 14.86 28.95 
a at local minima of DPS.W 'R{A)  0.64 2.09 22.00 
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(cl) (e) (f) 

Figiiro 3.30 Edge images with a obtained from Table 3.14; local minima 
of SD{(T): (a) (7 = 0.32. (b) A = 7.63. (c) A = 14.86: local 
minima of the DPSXX'R graph: (d) a = 0.64. (e) a = 2.09. (f) 
a = 22.0. 
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Figure 3.31 (a) Original image, (b) log magnitude of the Fourier transform, 
(c) ECS curves, (d) DPS.WR graph, (e) ''^dpssvr[z)) 
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Taljle 3.15 Global scale analysis of the image in Figure 3.31. 

Scale 1 Scale 2 Scale 3 Scale 4 
a  at local minima of . W ' G i a )  

a  a t  loca l  min ima  o f  R M S { a - )  

a  a t  loca l  min ima  o f  S D { a )  

a  a t  loca l  min ima  o f  D P S N V R { ( t )  
r  ( U D P h - W f t i : ) )  

^ u ' t a k  ,/-

0.32 
0.32 
0..32 
0.40 

1.93 
1.86 4.96 
1.86 5.58 

4.07 
8.93 

15.46 

(a) (b) (c) 

i d )  (e) (f) 

Figure' 3.32 Edge images with a obtained from Table 3.14: local minima of 
SDia): (a) a = 0.32. (b) a = 1.8C. (c) a = 5.58; local minima 

of the DPSX\'R graph and cy^-cak of ^ _ o.40. 
(e) a = 4.07. (f) a = 8.93. 
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Figure 3.33 CT scan of a soil sample: (a) original image, (b) log magnitude 
of the Fourier transform, (c) ECS curves, (d) DPSW'R graph. 
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Table 3.16 Global scale analysis of the image in Figure 3.33. 

Scale 1 Scale 2 Scale 3 
a  at local minima of .4l'G(cr) 0.32 6.78 
G  at local minima of R M S  { a )  0.32 7.34 
( T  at local minima of S D { a )  0.32 7.63 
( 7  at local minima of D P S W R { c r )  0.44 4.77 

„ r  < l ( D P S \ V m : ) )  
^ w t a k  

(a) (b) 

(c) (d) (e) 

Figure 3.34 Edge images with a obtained from Table 3.16: local minima 
of SD{ay. (a) a = 0.32. (b) a = 7.63; local minima of the 
DPSXX'R graph and a^.^ak of '^^^rssvk(=)) . ^ ^ 
a = 4.77. (e) a = 13.74. 
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3.6 Conclusions 

In this chapter, the problem of global scales is addressed. The global scale is defined 

as the resolution at which objects tend to exhibit some distinct observable character­

istics. Based on the concept of scale-frequency representation, a frequency domain ai>-

proach for global scale analysis is proposed. The method relies on the assumption that 

the spectrum of a multi.scale signal contains several frequency lobes related to global 

scales. The differential power spectrum normalized variance ratio (DPSWR) which is 

the rati(j lK>t\veen the second order normalized central moments of the power spectra 

of the niultiscale signal representation and the multiscale differential mask is used as a 

m(>asun> cjf global .scales. The local mininmm point in the DPSWR graph is u.sed as a 

global .scale indication. Since the computation of moments is less sensitive to uniformly 

distributed noise, the method performs well even in a low signal to noise ratio situation. 

In the situation when the separation distance between objects is too small to create the 

distinct global scale, the weak scale can be detected by observing the derivative of the 

DPSWR graph with respect to the natural scale parameter. In comparison, the edge 

characteristic-scale analysis performs poorly in several ca.ses while the DPS.W'R based 

technique performs extremely well in all ca.ses. 
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CHAPTER 4. LOCAL SCALE ANALYSIS OF EDGES AND 

MULTISCALE DATA FUSION 

In the i)nn iou.s chapter, a study of the global behavior of object edges establisiied a 

franunvork for scale analysis. The formulation was carried out in the frequency domain. 

Global statistics of edges at different scales were used for .scale detection while informa­

tion at each detected scale was rendered separately. As the analysis focuses on smaller 

details, local information becomes more important but local behavior of each object may 

not be reflected in the global statistics. Local scale analysis pre.sented in this chapter is 

specially designed for estimating suitable scale parameters to deal with local structures. 

Let /L"(R) denote the space of square-integrable functions such that for / G £"(R). 

For all /. (y € L-(R). the inner product between / and g on L-(R) is defined a.s 

4.1 1-Dimensional Local Scale Analysis 

(4 .1)  

( / • ^7 )  =  I  f { t . ) ( j { t )d t .  
JR 

(4 .2)  

while the L'  norm ||/|| is defined as 

il/ll = (/-/) (4 .3)  

(4 .4)  

Fnnn Cauchy-Schwarz inequality. 

(4 .5)  

it can be easilv seen that 

ma.x |( (4 .6)  
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which occurs when f  =  c  •  g .  where c .c  ^ 0. is a constant coefficient. Let o{a: t )  be a 

inultiscalo normalized template described as 

where o { f  )  is a synmietric mother smoothing function used to derive o. From (4.6). 

max|(/(/').o(a;0)|  (4.7) 

occurs when o { r r : t )  matches /(/). Hence 

(y,nas = arg max I (/(/)- o { a :  0)| (4.8) 
(7 

can be used to reveal scale information of /. Sizing by this method is analogous to 

measuring an unknown diameter of a hole by in.serting gauges of known sizes into tlio 

hole and finding the one that fits. 

.An example in Figure 4.1 demonstrates the application to size 1-dimensional rectan­

gular pulses based on Equation 4.8. The multiscale normalized Gau.ssian function used 

in this example is given by 

(4.9) 

where !jry|| is always 1. Figure 4.1-a shows the Gaussian functions g with <lifferent values 

of (7. The inner [product between a rectangular pulse /;(n':^): 

otherwise. 

and c j  is given by 

1 
•  d t  { p { \ V \ t ) . ( j {(7: t ) )  =  f e 

where 

erf(x) = —^ f  c ^ ^ ' d r .  
\ /~  Jo  

The gra{ih (/>(10; t ) . g { t 7 :  t ) )  as a function of a  with the peak at a„iax = 7.17 is shown in 

Figure 4.1-1). The relation between II' and cr„,nr is found to be 

^ max = O.TlTir 
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W 

( c )  

Figure 4.1 (a) .\Iulti.scale iiornializcd Gaussiaii fuiictioius (b) 
as a function of a. and (c) graph between IT 

and 

a.s illustrated by the grapli in Figure 4.1-c. 

Consider a scale-space image f{cj.t) obtained from 

= f{t)*o{(T:t) (4.10) 

=  I f { T )o{ a : t - T ) d T .  (4.11) 
JR. 

Siiic(> o(t) = oi — t). f{(T.t) can be written as 

f { ( T . t )  = f  f { T )o{cr:r -  t ) d T  (4.12) 
JK 

= (/(r).d(o-:r-f)). (4.13) 
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According to Cauchy-Schwarz inequality, local miixima of \ f { a . t ) \  occur when locations 

and sizes of o match those of local structures of /. Therefore, complete information 

of sizes, locations, and strengths of local structures of / can be obtained from local 

maxima of \ f{(7.t)\.  Equation 4.13 is called the local . ' icale analysis of / with respect 

to o{(7:t). .\n example shown in Figure 4.2-a is a signal x{t) with 2 rectangular pulses 

with ir = 10 and 20 centered at ^ = 110 and 240 respectively. In Figure 4.2-b. i j { t) is 

a degraded version of .r(0 corrupted by additive white Gaussian noi.se .V(0.0.25). The 

disc rete convolution is USCHI to compute the scale-space image [//(CR. 01- Figures 4.2-c 

a n d  4 . 2 - d  s h o w  \ i j ( f T . t ) \  a n d  i t s  c o n t o u r  p l o t  w h e r e  t h e r e  a r e  2  d i s t i n c t  p e a k s  a t  { t . a )  =  

(1 10.7.244) and (240.13.6G) c-orresponding to 2 rectangular pulses while spurious peaks 

due to ncjise can be seen in the lower part of the pictures. 

4.1.1 Multiscale Differential Operators 

Consider a multiscale first order derivative given by 

P i i f T . t )  =  p { t ) * O t { a : f )  (4.14) 

= - T)dT (4.15) 

where O(<T: f )  is a normalized multi.scale smoothing function. Using a.ssociative property 

of convolution. Ec[uation 4.14 can be rearrangcnl as 

d  
Pt { ( T . t )  = f  -  T ) d T  (4 .1G)  

JR d t  

= f P t { T ) o{ ( J :  t  -  T ) d T  (4 .17)  
- /R  

= f p ,{r) o i a:T -  f ) d T  (4 .18)  
J K  

= (p, ( r ) .o(cT:r -0) .  (-1 .19)  

Conseciuently. the nuiltiscale first order differential operation is ec[uivalent to local .scale 

analysis of pi{f) using the integration of the multisc-ale differential mask, f  6t((T: t)dt. as a 

template. The local maxima of |p((cr. reveal scale information of differential structures 

of /;(/). For a given multiscale first order differential mask o*. the normalization of Ot 

c an be done as 

g't = ^ / . O t i a i t ) .  (4 .20)  
\ \  S ^ O t i a :  t ) d t \ \  

In a trivial case, a Gau.ssian diffu.sed step function p { t )  is obtained by smoothing a 

u n i t  s t e j )  f u n c t i o n  u { t )  w i t h  t h e  G a u . s s i a n  f u n c t i o n  g { a Q : t ) .  

p { t )  =  ( j { r r o : t )  *  n { t )  
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Figure 4.2 (a) Original signal x{t), (h) dcgraclod signal !j{t). (c) y{a.t). (d) 
contour plot of 
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Fifijuro 4.3 (a) The first order normalized Gaussian differential masks, (b) 
integrations of the masks, (c) the smoothed step fimctions. 

= / r ' " O d L  
J  

Here. (tQ repre.sents a degree of smoothness of the signal. The first order normalized 

Gaussian differential function is given by 

- t  
(-1.22) 

Figure 4.3 shows examples the first order normalized Gaussian differential masks. Equa-
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tioii 4.14 vielcl.s 

I h i c r . t )  =  f { t ) * c / t { a : t )  

1 -:rr , , ,d 1 
;=—e -"of/n + ( , e 3^ 
2~Co dt 

1 /"^ "-r.-
, _ =— / p '"o p '.v-i dr 

'--x. 

y (T- + cr^ 
1  I  - . ,  r  • 
T - r r J — .  T z c  

which lias the peak at f = 0. By differentiating/ = 0) with respect to a and setting 

to zero. 

w o  get = (To that maximizes p i { < 7 . t ) .  This example demonstrates the application 

of the rniihiscale Gaussian differential operation for measuring tlie degree of smoothness 

of a signal. 

.-Viiother example of estimating smoothness of edges is shown in Figure 4.4. In general, 

a skjpe of an edge indicates the degree of smoothness of the edge. Figure 4.4-a is 

a signal / with ramp edges of slopes —0.0909 and 0.0244 centered at t = 100 and 

300 res{)ectively. Figure 4.4-b is a degraded version of / corrupted by aclditive white 

Gaussian noise .V(0. 0.01). The corresponding scale-space image and contour plot of 

!/>»,((T; / )| computed using Equation 4.14 with Ot = t) are shown in Figures 4.4-c and 

4.4-d respectively. \Vc see that there are 2 dominant peaks at {t.cr) = (101.4.801) and 

(.300.14.97) corresponding to the two edges where the values of a at the local minima 

ar(> related to slopes of the ramp edges. 

For higher order multiscale differential operators, nornuilization factors are needed 

to be chosen carefully depending upon the integration orders. In general, the n-order 

rmdtiscale differential mask can be written tis 

d t n { ( r \ t )  =  - — 6 { ( T : t ) .  
'  ( I f "  '  

The normalization factor is given by the i n ^ ' ^ - o r d e r  i n t e g r a t i o n  n o r m :  

(4.23) 

(4.25) 

(4.24) 
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Fifj,uro 4.4 (a) Original signal, (h) clogracled signal p { t ) .  (c) |p,(cr:/)|. (d) 
contour plot of jpf(iT;f)l. 

Tlic c liuic o of the integration order r n  depends on the shape of structures to lie matched 

l)ut in general rn = 1 works in most cases. 

4.2 Extension to iV-Dimensional Spaces 

To extend the proposed local scale analysis scheme to .V-dimensional signals, several 

issues must be taken into account. The origin and a set of .V linearly independent or-

thoriormal basis vectors are adequate to expre.ss an .V-dimensional coordinate system. 

In general, the geometrical information representation must be independent of the coor­

dinate .system. For example, differential structures [26. 79] are invariant under Cartesian 

coordinate transformations: rotation and translation. In this section, local scale analysis 
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of ciiffcrciitial structures is investigated. 

4.2.1 Differential Structures 

In orfler to express differential invariants of orthogonal -transformations in simple 

forms, it is natvual to introduce the local orthonormal coordinate system in which direc­

tions of axes depend on local information. Based on the gradient direction, the gauge 

coordiuate (r. ic) [26] is introduced such that r-cixis and tr-axis are. respectively, orthog­

onal and parallel to the local gradient vector. 

Since the gradient direction is invariant with respect to choice of coordinate system, 

all polynomial expressions in (r. tc) are invariant under orthogonal transformations. In 

general, the gauge coordinate .system in Ecjuation 4.28 is valid only in the areas of none 

zero gradient but such a condition is adecjuate for numerical analysis of images. Table 4.1 

shows examples of differential geometries which are invariant under Cartesian coordinate 

transformations of a 2-diniensionaI image exprc.ssed in Cartesian and gauge coordinates 

along with the corresponding geometrical meanings. In .scale-space analysis, differential 

geometries are related to differential structures. 

4.2.2 Scale Invariant Multiscale Differential Operators 

The fundamental components of differential structures are partial derivatives of the 

image. Ba.sed on the conccpt of scale-space analysis, multiscale partial derivative op­

erators must be invariant to scales. In the I-dimensional case, the integration norm 

was used as the normalization factor for the multiscale differential mask. However, in a 

multidimensional space, the choice of suitable integration direction is difficult. Normal­

ization of the mask by the integration norm must be selected according to the integration 

where and L,j represent image derivatives in x and tj directions and 6 = tan ' 

Partial derivative operators in r and ic directions can be computed by 

(4.29) 
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Table -1.1 Examples of 2-climensional differential structures invariant under 
Cartesian coordinate transformations. 

Cartesian Gauge Geometrical meaning 

L Intensity image 

Li -r Li Li IVLP ' J  

Lj-j. -r L,,y + Lu ir Laplacian V-L 

Isophote curvature [-> y y 21^ f I, ,J rj ^ j-T 
^ ~~u-

r  y i  f -  y  y  ^  r  r  ) r  y  {  Flowlinc ciirvatiiro 

L"̂  L rr -r2Lr Ly Lj-y ŷy r  ^  t  | ̂  r t \ ^ L  U-u.- V(|VL|)-

path. In this research, we propose the scale invariant normalization scheme for the 2-

fIiin(Misioiial rnultiscale differential masks using the directional integration norm of the 

masks as follows: 

For a function f { j : . i j ) .  the (p.(/)-order integration norm in .r-direction is defined as 

-Vx(,, , „ ( / ) =  f  i f  ( f  f { x . y ) d x P d , j " ) - d x ) i d { j .  (4.30) 
7R 7R 

Similarly, the (/j. f/)-order integration norm in //-direction is defined a.s 

=  [  i f  i f  f { j - .  ! j ) d x P d ! / ' ) ' ' d ! j ) ' ^ d x .  (4.31) 
JK -/R Jb.<p-o 

The normalization factors for O x " y " ' i < y :  x .  i / )  are .selected from the directional integra­

tion norms .Vj"(p(Ox'-j,™) and .V.V(p.,,)(Ox"y'") depending on the order and direction of 

int(>gration. In this re.search. the normalization factors are limited to the first order 

directional integration norms: 

• ' ' ( \ . 0 ) i O j : " y " < i ( T :  X .  j j ) )  —  O j : n , j , n { a :  X .  ! j ) d x ) ~ d x )  - ! d i j .  n  >  1. (4.32) 

and 

-V'/(o.i)(Ox"„"-(cr:x.//)) = jj^J^{j^o^n,jnr{cT:x.y)dij)'-dy)^-dx. m > 1. (4.33) 
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In tlu> clisc rotc ease. .Vx(i o) nnd .V//(i.o) given by 

-Vx(i.o)(Oxny-(cr:x./y)) = $3 I ̂  H (cr: x./y)|-)3 (4.34) 
• f/ - X X 

and 

.'/(O.I) (<t: X./y)) = 5Z(t7 51 It? (c: • (-1-35) 
X y y 

u hcre .V x M is the mask size. The choice of directional normalization fcictors depends 

on tlie ()r(l(>r of partial derivations that generate the ma.sk Ojrr-ym (a: .r. tj). For instance, 

rhe nonnalization factor of !j) -'•(I.O)('3XXJ-) while the normalization factor 

of o, iy , , { r r :  . r . ! ] )  is .V/y(o.i)(Oyyy)- On the other hand, for Oj- j -y ia :  x .  f j ) .  there are 3 possible 

I)arrial derivation orclers 

O d d  
O j . j .y { ( r : x . ! j )  = — O j :y { ( y : x . i i )  or - ^ o y s i o - .  x .  i j )  or —o„(cr: x./y). 

Hence. -Vxj i o)(Orxy) ij' used for the first two cases while .V/y(o.i)(Ojxy) is used for the last 
cas(>. 

In general, the numl)er of partial derivative orders to generate from Ox'^-hy is 

while the ruimber of partial derivative orders to generate from Ox-y'"-" is 

1')! • total number of partial derivative orders to generate from Oj-n-iym 

and O j - n , i s  ' " 7 " ' , ' " •  A s  a  r e s u l t ,  t h e  a v e r a g e  n o r m a l i z a t i o n  f a c t o r  n  used in the ^ ' /  nlrri l  o  

computation of differential structures for Oj-ny,r, is given by 

I _ /;!///! /(n + — 1)! 1 (n + /ri — 1)! I 

n  { n  +  n i ) \ \  { n  -  l y . r n l  -Vxj i.o)(Ox'-y-) n!(m - 1)! -V/y(o.i)(Oj.nym ) 

F\)r exami)le. the 2-dimensioiial inultiscale Gaussian function and its first order partial 

derivatives are given by 

o { c r : x . i j )  =  —. (4.37) 
In (7" 

O x ( c r ; x . / y )  =  - — 5 ^  ( 4 . 3 8 )  
27ra' 

aiifl 

O y { ( T : x . ( j )  =  (-1.39) 
ZTTfT' 

The normalization factor of O y { a :  x.  i j )  and O j . ( a :  x.  i j ) .  are given by 

-V.'Ao.i)(Oy(cr: J-./y)) = .Vx(i.o)(Ox(cr: x. .v)) (4.40) 

=  f ( f  \ f  Q x { ^ - - r .  ! / ) d x \ ' ^ d x ) ^ ^ d ! j  (4-41) 
JR JR Jr  

j . (4.3C) 
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= f { [  o { c r - . x . y ) ' - d x ) ' ^ d y  (4.42) 
Vr 7R 

=  f i f  d x ) ~ ^ d y  (4.43) 
J R  J R  2 n ( J -

(4.44) 
\J2o^ 

4.2.3 Local Scale Analysis of Edges in 2-Dimensional Images 

Imago gradient is a natural descriptor of edges. The strength of edges can be de­

termined from the gradient magnitude while edge locations can be obtained from the 

maximum gradient paths. Local scale analysis of edges determines degrees of smooth­

ness of edges in terms of scale parameters. Lindenberg [.52] introduced the differential 

geometric definition of edges based on image gradient: 

r  _  2 L j - L , j L x y  +  L y L y y  ^  ̂  /  i  i - \  
^ w w  —  r  >  ,  f  ~  /.J, -h L -

f  + 3 L - L  L  + 3 L  L  ' L  - ^ T ^ L  
< 0. (4.4G) 

This definition is equivalent to the maximum gradient path. To avoid the direct compu­

tation of high order partial derivatives, definition of edges used in this research is given 

by 

L.,,. = V(|V£,|) • jUj = 0 H-JT) 

and 

VL,,„. - VL < 0. (4.48) 

In practice, edge localization is done by detecting zero crossing paths where changes 

its sign and Equation 4.48 is satisfied. 

For local scale analysis, it is assumed that edges in different parts of an image have 

different degrees of smoothne.ss corresponding to different <T. To analyze .scales of local 

edges ,  normal ized rnul t i scale  Gat i . ss ian  d i f ferent ia l  opera tors .  O j : { a : x . y )  and O y { ( j : x . y )  

with normalization factors in Eciuation 4.44 are employed. For an image L. local scale 

analysis of edges in L is obtained by collecting the maximum edge map e„,aj: along with 

frnuTiJ-'U) = max|VZ,(cr: J-, ^)| (4.49) 

= max yjLiiaix.y) -f Ll{a:x.tj) (4.50) 

= max \ J { L  *  O x { ( T \  X ,  y ) )  '  +  { L  *  6 y { a \  x .  /;))'- (4-51) 
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and 

CTfnaxi-r-y) = HFg HlclX | VL (CT) |. (4.52) 
< T  

Using tlie definition of edges in 4.47 and 4.48 to localize edges, location information of 

edges is obtained. 

E.xatnples of local scale anah\sis of edges are given below. The first example in Fig­

ure 4.5-a shows a simulated image containing a scjuare smoothed b}- Gaussian masks 

of different scales. The lower left, lower right, upper right, and upper left quarters of 

tlie s(|uare are smoothed by the nuilti.scale 2-dimensional Gaussian smoothing functions 

with (Ty = 1.2.4. and 8 respectively. Two local .scale analysis methods with and without 

edge localization are tested. The nuiltiscale Gaussian differential masks with the nor­

malization factors computed using the discrete formulae in Equations 4.34 and 4.35 are 

used. In the method with edge localization, only edge pixels satisfying conditions in 4.47 

and 4.48 are taken into account. The <T-niap and e„iax obtained from Equations 4.52 and 

4.51 without edge localization arc displayed in Figures 4.5-b and 4.5-c while those with 

edge localizaticjii are displayed in Figures 4.5-d and 4.5-e respectively. Comparing the 

results with and without edge localization, results without edge localization yields fal.se 

indic ation of a in the areas adjacent to the structures. This attributes to the diffusion of 

tlie gradient of the strong structures in the neighborhood. In contrast, in Figures 4.5-d 

and 4.5-e. only edge pi.xels are pre.served. Figure 4.5-f shows the values of (T„ias detected 

along the perimeter of the square which clo.sely match the actual values of aq of the 

Gau.ssian smoothing functions used to smooth the .square. The ne.xt e.xatiiple in Figure 

4.G shows the application of local scale analysis for blur estimation. Figure 4.6-a contain 

in-focus ancl out-of-focus objects. The cr-maps in Figures 4.G-c and 4.G-e indicate the 

small values of a at edges of the in-focus object and the large values of cr at edges of 

the out-of-focus object. The results using edge localization yields a sharper ('mas iniage 

shown in Figme 4.C-d compared to the image in Figure 4.6-1) obtained without 

edge localization. 

Besides sizing the local structures, this procedure can be used for mviltiscale data 

fusion where only values associated with local maxima of the scale-space differential 

structure image are collected. In the next section, several rnultiscale data fusion methods 

jire investigated. 
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(a) (b) 

(c) 

(o) 

( c l )  

i n  

Figure -1.5 (a) Original image of a smoothed square, (b) cr-map and (c) 
<^max without cdgc localization, (d) cr-map and (e) with 
edge localization, (f) cr„,ax along the boundary of the square. 
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(b) 

(cl)  

(a) 

(c)  

"  x ; > -

-> • .' / ' - ; 

•, '-' • >} • v,^ 

' •  ' -  \  M  •  

> t  

' • S .̂ U ' > s. \ u • 
, . / A ̂ -

(e) 

'^A 

uro 4.6 (a) Original image (courtesy of John Kesterson, V'ayTek, Inc.), 
(b) e-rnax 'iiici (c) (T-map without edge localization, (d) e,nax '^nd 
(e) <T-inap with edge localization. 
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4.3 Multiscale Data Fusion and Multiple Scale Differential 

Masks 

Multiscale data fvision is the method for utilizing data obtained at different scales. 

The techniques proposed so far were based on the behavior of image structures such 

as local extrerna of scale-space gradient magnitude images or zero crossings of scale-

space Laplacian images [5. 28. 29. 32. 34. 47. 56. 67]. E.xhaustive searches as well as 

tracking sciiemes that links structures at different scales together using data structures 

such as trees and techniques for handling structures of different topologies at different 

scales ha\e been employed. One approach investigated in this research is summation of 

multiscale data. Ba.sed on the scale invariant normalization .scheme proposed previously, 

the details at all scales are treated equally. Summation of data at all scales can therefore 

be done directly without any modification. 

Let ./•./y) be a scale-space differential structure image. Multiscale data fusion 

images are obtained as 

(4.53) 
(T 

and 

J  X .  i j ) d z .  a > 0. (-1-54) 

for discrete and continuous <y respectively. To obtain a nniltiscale data fusion image 

of nonlinear difforential structures, computation of ^ at each scale must be performed 

individually. Hence the overall computational cost of a nniltiscale data fusion inuige in 

4.53 is as same as that required for local scale analysis. On the other hand, for linear 

differential structures, summation of multiscale differential structure images is equivalent 

to a single convolution between the image and summation of the corresponding multiscale 

kernels  v { a : . r . ! j ) :  

*  u { ( 7 : x , i j )  (4.55) 
(T a 

= L(.r. y )  * t.-(cr; x .  i j ) .  (4.56) 
< T  

.A.s a result, the computational cost is significantly reduced. The mask ^„c-{a:x.!/) 

is called the multiple scala mask. Ba.scd on this concept, the nuiltiple scale differential 

mask is given by 

" / X Px" y'" i^i- !j) .. —> 2^ (g.: x.y) = ̂  —(4.0/) 
(=0 1=0 (*^1' //)) 
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where .V(o^ a^m (^CT11 JT. !/)) is the normalization factor of (cr,: /y) computed using 

Eciuation 4.3G. is the total number of scales, and 

cr, = (TO • a'. Q > 1 and CTQ > 0. 

Figures 4.7 to 4.9 illustrate examples of multiple scale differential masks. Since the 

multiple .scale differential masks arc the combinations of the normalized multi-scale dif­

ferential masks cit different scales, differential structures computed contain contribution 

fnjiii different scales. 

4.3.1 Experimental Results of Multiscale Data Fusion 

Lei be a riuilti.scale differential structure image. 4 multiscale data fusion algorithms 

tested in this .section are listed below. 

1. Ma.ximization of |^| with respect to a without feature localization: 

'I' i ^ r r i a j :  •  •  ! j )  

where 

<7rnax = argouix j'l'Ccr: J". !j)\. < J  

2. .Maximization of |^| with respect to a with feature localization; 

^ ( ^inax • ^  i  - !Ji)  

where 

= arg max | (o": x,. /y,) | 
<7 

and {(.r,. /y,)} represent locations of structures. 

3. Sununation of 4' with respect to a: 

a 

4. Computing using the nuiltiple scale differential miusks: 

— f  -  Ly '  ^ xx  •  ^ xy  •  •  •  •  )  r  

where Lj-. Ly. L^j^, L^y Lj^nym are computed using multiple scale differential 

masks. 
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-20 -10 0 10 20 
X 

(C) 

Figiiro 4.7 The multiple scale differential mask "^'^=0 s. ij) with a  

varying from 0.5 to 11.88: (a) surface plot. (V)) cross .section 
at !j = 0. (c) intensity image. 

.A coin{)arison between the different multiscale data fusion algorithms is demonstrated 

by e.xainples given next. In all the examples, normalized nniltiscale Gau.ssian differential 

masks were used to generate multiscale partial derivatives of the images as well as 

multiscale differential structure images. Results of multiscale data fusion of gradient 

magnitude images and Laplacian images are provided. 

4.3.1.1 Multiscale data fusion of gradient magnitude images 

Figure 4.10 illustrates the gradient magnitude images y 7 L { c r : x . y ) \  at several .scales. 

The original image shown in Figure 4.10-a contains sharp edges to the right of the 
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r^: 

( c )  

Figure 4.8 The multiple scale differential mask Oxx{<^i'-l'-!j) with a 
varying from O.o to 11.88: (a) surface plot, (b) cro.ss section 
at // = 0. (c) intensity image. 
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Figure 4.9 Tlic iiuiltiple scale differential mask x .  t j )  with a  

varying from 0.5 to 11.88: (a) surface plot, (b) intensity image. 

face and blurred edges at the shadow to the left of the face. The images L { a :  x .  ! j ) \  

shown in Figures 4.10-b to 4.10-f are computed using the normalized nuilti.scale Gaussian 

differential masks. 
J' _ R~ * V " 

Ox(rr;.r. y) = ===c • 

and 

0 , j { a - . x . t j )  =  ,  ( '  

42^0-

The 4 multi.scale data fusion algorithms for |VZ.(c7: .r./y)| arc oi)tained as follows. 

1. .Maximization of |yZ,| witii respect to a without edge localization; 

max \ V L { a :  x .  /y)|. 
<7 

2. .Ma.ximization of |VZ,| with respect to a with edge localization: 

max \  V L { a :  x , .  i j , ) \ ,  
O "  

whorp (.r,.//,) satisfies 

^ L j - L j j L ^ y y  -f- L y L y y y  

= 0 

< 0.  
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Figure -J. 10 (a) Original image L. (b) to (f) gradient magnitude images 
|VL(cr: J-,/y)| with o = 0.5. 1. 2, 4, and 8 respectively. 
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3. Summation of the multiscale gradient magnitude images: 

a  

4. |VZ,| computed using the multiple scale differential masks; 

i v t i  =  +  q .  

where 

= L{x.  -V) 
( T  

and 

L,, = L{x. tj) ^ o,j{a: x. i j ) .  
( T  

The overall computational effort required to perform nmltiscale data fusion of the 

first three cases is approximately the same since |VZ,| at each scale must be computed 

individually. In the last case, only 2 convolutions are required between the image and 

multiple scale differential masks. 

Results obtained from 4 multiscale data fusion algorithms are shown in Figure 4.11. 

As seen. maXcr |VZ.(cr:x, /y)| with edge localization in Figure 4.11-a provides the sharpest 

results while ma.Xo^ \^L{a:x.ij)\ without edge localization in Figure 4.11-b provides the 

most blurred data fusion image. The gradient image in Figure 4.11-d obtained using 

the multi{)le scale differential masks is comparable to that obtained using summation 

of tlie nuUti.scale gradient images as seen in Figure 4.11-c. The ciuality of the gradient 

magni tude  images  in  F igures  4 .11-c  and  4 .11-d  a re  in  be tween those  of  maxo^ lVZ.(cr :  x.  y) \  

with and without edge localization. In Figures 4.11-c and 4.11-d. the shape preservation 

property is demonstrated by fine details at blurred edges of the shadow on the left 

shoulder and on the left side of the face. Unlike the first 2 algorithms that totally 

discard all weak details, details at all scales arc preserved in the sunmiation method and 

the method using the multiple scale differential masks. 

4.3.1.2 Multiscale data fusion of Laplacian images 

The Laplacian image V'-'Z, is defined as 

V J L  — L x x  ^ y y  

Since the Laplacian operator is linear, summation of multiscale Laplacian images is 

eciuivalent to computing the Laplacian image using the multiple scale differential masks. 

-Multiscale data fusion algorithms for Laplacian images are thus given below: 
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(a) 

\ \ 

(b) 

( c )  (c l )  

Multiscale data fusion images of |VZ,(cr: j;.//)| of the image 
in Figure 4.10-a with a varying from 0.5 to 7.81: (a) and 
(b) max^ I VZ-(<t: X, {/)! with and without edge localization, (c) 

L{cr-, X. ij)\. (d) |VL| computed using the multiple scale 
differential masks. 
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1. Maximization of |V-ZL|: 

max ̂  X.  ( /)  

where 

c^rnax = arg max | V-L(cr: x. f/)|. 
C T  

2 .  Surnniation of the rnultiscale Laplacian images: 

^ V-£(cr:x.//) = L{x. t j )  * (^Oj:x(cr:x./y) + ̂  o„„(cr: .r. y)). 
( T  ( T  f T  

The c omputation of ^-!/) requires only one convolutions. 

Examples of multiscale data fusion of Laplacian images are demonstrated in Figures 

4.12 to 4.20 . The original images in Figures 4.14-a. 4.17-a. and 4.20-a contain edge 

details with different degrees of smoothness. The images of V"Z,(cr: x. y) at several 

.scales are shown in Figures 4.12-b to 4.r2-f. 4.1o-b to 4.15-e. and 4.18-b to 4.18-e while 

the images of sign( V-L(cr: x./y)) are shown in Figures 4.13-1) to 4.13-f. 4.16-b to 4.16-e. 

and 4.19-b to 4.19-e where the white areas represent the positive sign. While the results 

obtained using the small a are prone to noise, those obtained using the large a introduce 

more shape distortion. In these cases, the results obtained at a single scale fail to capture 

edge details. On tlie other hand, the results in Figures 4.14-c. 4.14-e. 4.17-c. 4.17-e. 4.20-

c. and 4.20-e obtained using tlie multiscale data fusion methods clearly preserve outlines 

of the ol)jects and remove nearby spurious details. These examples show how well details 

at different scales are combined to achieve both structure preservation and spurious noise 

su{)pression 

In general, in traditional image analysis, diffusion of strong structures to the sur­

rounding areas induced i)y smoothing process creates undesirable edge effect. However, 

the proposed nniltiscale data fusion algorithms exploit this diffusion phenomenon to 

eliminate spurious details surrounding the structures. According to these preliminary 

n>sults. advantages and disadvantages of the tested multi.scale data fusion methods are 

summarized in Table 4.2. 
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Figure 4.12 (a) Original image L .  (b) to (f) Laplacian images V~L with a  
= 1, 2, 4. 8. and IG respectively. 
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Figmo 4.13 (a) Original image L .  (b) to (f) images of sign(V-Z.((T: x. .f/)) 

with a = 1. 2. 4. 8. and 16 respectively. 
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(a)  

(ci) (o) 

Figure 4.14 Multiscalc data fusioii images of X .  I J )  with A  varying 

from 0.5 to 15.77: (a) original image L.  (b) V"L(crrnaj-:-'"• .v)- (<^0 

s\gn{V'L{a„,a.:x.fj)). (d) E.V^L. (e) sign(E. V'L). 
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Figure 4.15 (a) Original image L .  (b) to (e) Laplacian images V-Z, with cr 

= 1. 2. -1. and 8 respectively. 
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(a)  

(c l )  (e)  

Figaro 4.IG (a) Original image L .  (b) to (e) images of sign( V-L((t: x,/y)) 

with cr = 1. 2, 4. and 8 respectively. 
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m  

(ci) (e) 

Figiiro 4.17 Multiscale data fusion images of ^~L{a,nax' -i'- !j) ^vith a varying 

from 0.5 to 8.1: (a) original image L. (b) .r. (/). (c) 

sign(V-'I(cT„,„.:x.//)). (cl) E. (e) sign(E. V-L). 
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(a) 

(C-) 

(ci) (o)  

Figure 4.18 (a) Original image L  (courtesy of .John Kesterson. \"ayTek. 

Inc.). (b) to (e) Laplacian images V'Z, with a = 1. 2. 4. and 8 

respectively. 
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(d) (e) 

Fifi;uro 4.19 (a) Original image L.  (b) to (o) images of sigu(V"Z.(<T: .r. y)) 

with cr = 1, 2, 4, and 8 respectively. 
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(a)  

(b) (c) 

i d )  ( c )  

Figure -1.20 Multiscale data fusion images of V'L{(j„tax- v) varying 

from 0.5 to 8.1: (a) original image L.  (b) V-L(o-,„„j.;x.//). (c) 

sign(V-L(a„,„^: j;./;)). (d) T,^V-L. (e) signdla V"L). 
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Tabic 4.2 Summary of multiscale data fusion algorithms. 

Complexity Computational cost Scale analysis 

^ { ' 7 ,nnx -  L (x .  ! j ) )  without 

feature localization 

Low High \es 

L{x . ! / ) )  with 

feature localization 

High High \es 

L{ . r . ! j ) )  Low High Xo 

^V(L ( j \  i j ) )  obtained 

using multiple .scale 

differential masks 

Low Low Xo 

4.4 Conclusions 

The local scalc analysis method proposed in this chapter is based on multiscale 

feature matching. The multiscale differential operations are considered as matching 

between image derivatives and integrations of the masks. The integration norms are 

used as normalization fiictors of the rnulti.scale differential masks. Information of scales, 

hjcations. and strength of structures are obtained from local maxima of the nuiltiscale 

differential structure images. In the second part. 4 multiscale data fusion algorithms 

are proposed where details obtained at all scales are treated equally by using a scale 

invariant normalization .scheme. The most striking features of the method using multiple 

.sc ale differential masks are the low computational cost needed for the algorithm and the 

shape preservation property. The method requires only few convolutions to compute the 

differential structure images in contrast to other methods that compute details at each 

scale. In addition, the results obtained using multiple scale differential masks pre.serve 

all strong details at all scales of interest with little shape distortion. The use of multiple 

scale differential masks also increa.ses scalc selection tolerance since the computation of 

the mask is performed using a range of scales instead of a single scale value. 
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CHAPTER 5. BOUNDARY EXTRACTION ALGORITHM 

The prrvious diapters deal with the selection of suitable inultiscale differential masks 

and sc-alc parameters to generate feature images, especially, the differential structures of 

an image. The next step in image analysis is to extract the information into organized 

structures using a boundary extraction algorithm that provides complete information of 

object Ijoundaries essential for image analysis. 

5.1 Background 

In the previous work [22]. a boundary extraction algorithm was developed based on 

a [)article model in two orthogonal velocity fields. In general, a particle P in a system 

can be descril)ed by the 4-tuple 

P -= {p.  in .  V .  F).  

where p.  tu .  and r are position, mass, and velocity of a particle and F is a force acting on 

tlie particle as shown in Figure o.l. When F and tn are neglected, the particle position 

in a first order .system is given by 

p{t) = i){Q) + ct, ( o . l )  

where /T(()) is an initial position. In a discrete case. Equation 5.1 is replaced by 

Pk~i = Pk + (5.2) 

where A/ is the time step and pu and denote the particle position and velocity at the 

time step. Equation 5.2 is well suited for boundary extraction where the velocity 

field is derived from the image. Generally, c depends on position and time. In tliis 

research, however, since all fields derived from an image are static, c is a function of 

I)osition alone. On the right hand side of Equation 5.2. at position p^ is needed to be 

ol)servabl(>. Therefore, for di.screte velocity fields derived from an image, a polynomial 

surface apinoxirnation technique is employed for obtaining the field values at arbitrary 
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Figure 5.1 Particle P in a force field F. 

positions. Surface approximation techniques used in this re.search are described in .\f>-

pendix .A. 

5.1.1 A Model of Particle Motion in a Combined Orthogonal Velocity Field 

Consider the differential representation of a curve by two .sets of vectors tangential 

and normal to tlie curve. In general, a curve can be unicjuely represented using two 

differential components directed tangential and normal to the curve [54]. In di.screte 

representation, a curve can be e.xpressed by the recursive equation 

= Pk + + •4"*:- (-"i-S) 

as shown in Figure 5.2 where is the A:'-' '  point of the curve, and rik are unit vectors 

tangential and normal to the curve at p^ respectively while Q^. and are constant 

(•(jefficienrs. Based on Ecjuation 5.3. two sets of vectors tangential and normal to the 

IxMindarv are required for boundary representation. 

By cf)nii)iriing Equations 5.2 and 5.3. the particle model proposed in the previous 

work is given by 

Pk~i = Pk -r ctck + Jiik- (5-4) 

where a and are tangential and normal stepping factors respectively and c and n are 

the edge vector field and the normal compressive velocity field tangential and normal 

to object boundaries respectively. The edge vector field e is defined as the normalized 

Hamiltonian gradient vector field: 

e = - Lj:j) (5.5) 
c 

= (VZ,)^. (5.G) 
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ow. 

Figure 5.2 Discrete representation of a cur\'e by a set of tangent and normal 

vectors. 

where ()- denotes the 90-degree rotation transformation, c = max|VZ,|. and i and j 

are unit vectors in x and tj directions respectively. .-Vn example of the edge vector field 

obtained using the Gaussian differential nuisks with cr = I is shown in Figure 5.3-a 

where edge vectors tangential to the object boundaries form the "edge curreius" flowing 

around the object. 

For the normal compressive velocity field ii. 2 vector fields, namely the nornuilized 

graflient of the gradient magnitude image and the normalized Laplacian-gradient vec­

tor fields, were used in the previous work. The nornuilized gradient of the gradient 

magnitude image is computed as 

iv(|vz.|) = \y(^L-i + Ll) 

/  L x y )  I -  " i "  {L^Lj-y "i" L y Lyy)j) 

while the normalized Laplacian-gradient vector field is defined as 

ivL • V-L =  V .x + + L J) 
where c is the normalization factor, c = nuix |  V(|VjL |) |  in the former ca.se and r = 

InuixVL - V-L| in the latter case. Figures 5.3-c and 5.3-c show examples of ^V|VL| 

and pV-L • VL respectively computed using the Gaussian differential masks with <T = 1. 

In the ca.se of iV|VL|. since |VL| has its maximum gradient path along the object 

boundary. ^V1VZ.| points toward the nearest object boundaries. Similarly. V"L has 

opposite signs in the areas inside and outside the object. As a result. • VL points 

tcjwards the nearest object boundaries. This is clearly demonstrated in both Figures 

0.3-C and .j.3-e. 
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Figure 5.3 Particle trajectories based on Equation 5.4; (a) edge vector field. 

(1)) trajectory with a = 0.1 and 3 = 0. (c) iV|VL|. (d) trajec­

tory witli a = 0.1, J = 0.1, and n = ^V|VL|. (e) ^V"Z/ • VL, 

(f) trajectory with ft = 0.1. 3 = 0.1, and n = ^V~L • VL. 
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In Eciiiation 5.4. while the edge vector field e drives a particle along the object 

boundary, the normal velocity field n forces the particle to stay within the confines of 

the boundary. In terms of edge localization, the edge vector field is used to locate an 

edge in the direction tangential to the edges while the normal compressive velocity field 

loc alizes the edge in the direction normal to the edge. The particle trajectory obtained 

using Equation 5.4 with a = 0.1 and J = 0 is displayed in Figure 5.3-b where po is a 

starting point. Clearly the absence of the normal compressive velocity field results in 

a spiral trajectory pattern. The particle trajectories obtained using Equation 5.4 with 

n = O.I. .i = 0.1. and rl = -VjVLI and rl = -V"Z, • VZ, are shown in Figures 5.3-d 

and 5.3-f res^jectively. In all examples in Figure 5.3. bilinear interpolation was used to 

estimate the field values. 01)viously, the combination of the edge vector field and the 

normal compre.ssive velocity field yields closed trajectories confined to object boundaries. 

5.1.2 Particle Trajectories in a Combined Orthogonal Velocity Field 

From Equation 5.4. we .see that the particle trajectory depends on the starting point, 

sc ale of the masks a. the tangential and normal compre.ssive velocity fields, and param­

eters o and .1 Figure 5.4 illustrates how the particle follows the object boundary at the 

object c-oruer using various ratios -. In the case when fi = -ViVLI. the ratio - has little ^ o r ' '  a 

c^ffc'ct (ju the resulting trajectories. In contrast, when rl = • VL. the significance 

of - can he observed. As seen in Figure 5.4-1). the larger the ratio -. the clo.ser the n " " o 

trajec-tory to the object edge. The asymmetrical property of the particle trajectory c:an 

also be seen in Figure 5.4-b. 

.A.noth(>r important i)aramcter is the scale a of the masks used to generate the fields. 

Figure 5.5 shows the effect of a on the particle trajectories where multi.scale Gaussian 

differential masks with different values of a were u.sed to geneiate the fields. Bcjth Fig­

ure's 5.5-a and 5.5-b demonstrate that the larger the scale, the smoother the trajectory 

resulting in poor edge localization. One obvious difference between the trajectory ob­

tained using il = ^VIVZ-I and that obtained using fl = ^'V'L • VL is that in the first 

ca.se. the obtained trajectory tends to be smaller than the actual object boundary par-

tic ularly at corners while in the latter ca.se, the particle deviates away from the object 

I)c)undary at c-orners resulting in a trajectory larger than the actual object boundary. 

The (jbject boundaries can be retrieved by following the convergent paths of the 

[^artic le trajectories. In order to allow the particle to converge to the true boundaries 

ra[)iclly. locral maxima of the gradient magnitude image are used as initial points. By 

using both pcjsitive and negative values of the tangential stepping factor, the algorithm 
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Figaro 5.4 Particlo trajoctorics at the object corner obtained using Equa­

tion 5.4 witli a = 1.0: (a) n = ^V|VL| and (b) n = ^V~Z, • VZL. 

(a) (b) 

Figure 5.5 Particle trajectories obtained using Equation 5.4 with a = O.I 

and = 0.1: (a) n = ^V|VL| and (b) n = ^V-'L • VL. 
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c an bo oxtondod to boundary extraction of multiple objects. 

5.1.3 Disadvantages of the Previous Particle Model 

The boundary extraction algorithm based on particle motion in a combined orthog-

cnial velocity field in the previous work hcis several advantages. Since the positions of a 

I)artic Io in Equation 5.4 are real and can be computed using an arbitrary step size, this 

algorithm provides results with subpixel re.solution. Due to its sequential edge linking 

scheino. the method is topologically unrestricted and requires simple initialization. In 

addiiiuii. the i)Oundaries obtained ijv the method are guaranteed to be connected. The 

met hod is also fast and simple. Nevertheless, the algorithm al.so suffers from several 

sources of edge localization errors. 

1. Edge localization error due to the particle motion equation. Equation 5.4 

dcjes ncjt exploit the cjptimization algorithm for edge localization. In Equation 5.4. 

the particle position is updatf>d in both tangential and normal direction in each 

time step. Hence, before the particle trajectory converges to the object boundary 

the particle has already traveled some distance in the tangential direction. This 

causes significant distortion at corners. In other words, the particle model ba.sed 

on Ecpiation 5.4 has an "inertial forc-e" preventing the particle to follow the oi)ject 

boundaries in the areas of high ciuvature accurately. 

2. Edge localization error due to the normal compressive velocity field. 

.Most edge localization errors occur at corners and junctions. The trajectory ob­

tained using the normalized gradient of the gradient magnitude image tends to cut 

through the corners while that obtaincnl using the normalized Laplacian-gradient 

vec tor field tends tc:) deviate away from the corners. 

3. Edge localization error due to the size of the differential masks. The effc'ct 

of the mask size on the detected object edges is well known in image proce.ssing. 

L'sing small size differential masks, accurate boundaries can be obtained but the 

results are prcine to noise. On the other hand, large size masks yield results with 

tjetter noise suppression but poorer edge localization. 

In addition to edge localization error, the representation of the particle trajectory is less 

effic ient since all computed positions of the particle are recorded as boundary points. 



www.manaraa.com

107 

5.2 New Model for Boundary Extraction 

At tho heart of boundary* extraction is edge localization. The performance of bound­

ary extraction algorithms is usually determined in terms of the accuracy of edge lo­

calization. In general, for seciuential boundary extraction, two edge localization steps, 

one in tangential and another in normal direction of object boundaries, arc necessary. 

In the previous work, the edge vector field orthogonal to image gradient is used to di­

rect the particle along object boundaries in the tangential direction while the normal 

conipre.ssive velocity field forces the particle to rest on the boundary. The overall per-

f()nnanc(>^ of the algorithm depends significantly on the choice of the fields and edge 

localization methods. A generalized framework for deriving the tangential and normal 

coniin-essive velocity fields and a new edge localization .scheme for overcoming the earlier 

disadvantages are propo.sed next. 

5.2.1 Fields for Boundary Localization 

The fields used for edge localization are refered to as tangential and normal corii-

prcssifc rcloritf) ficldfi. t and ri. respectively. The tangential velocity field must have all 

flux lines parallel or directed tangential to the nearest boundary edge while all Hux lines 

in the normal compressive velocity field must point toward the nearest boundary edge. 

Only the fields that satisfy these conditions are u.seful for boundary extraction. 

The normal compressive velocity field hcis the unicjue compressive property where all 

flux lines are directed to the proximate object boundary. An example of the field having 

this [jroperty is the gradient of gradient magnitude image. V(|VL|). Since the maxinuim 

gradient path always occurs at an object boundary and V(|ViL|) always points towards 

the areas of the higher gradient magnitude. V(|VL|) always points to the boundary. In 

the case (jf the Laplacian-gradient vector field V'L • VL. the compressive property is 

rlue to the multiplication 

n = X • ^ (5-~) 

where A is the scalar houndarij localization field with its sign indicating the side with 

respect to the boimdary and 7 is the normal velocity field with its flux lines oblique 

or (Mthogonal to the object boundaries in one direction, similar to the gradient field. 

Principal choices of A are and V'L. For example, in the L'^-r Ljj 
cas(> of the Laplacian-gradient vector field, A = V"L and 7 = V£. Using the boundaries 

as dividing lines, sign(A) determines if a point is inside or outside the objects. The change 

of sign(A) is used to locate the boundaries. Figures o.G-c and 5.7-c show examples of 
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and V-L computed using the Gaussian differential nuisks with a = 1.0. Assuming that 

the oljjects are tiarker than background, in both Figures o.G-c and o.T-c. the positive 

signs indicate the pixels inside the object while the negative signs indicate the pixels 

outside the object. 

For the normal velocity field 7. the principal choice is the gradient field VZ, as 

shown in Figures 5.6-b and 5.7-b. Although, the gradient flux lines are orthogonal to 

the boundaries, the gradient field does not have the compressive property since all local 

gradi(>nt v(>crors at pixels inside and outside the object point in the same direction of the 

steepest iiifliriation. On the other hand, even though, the boundaries can be detected by 

observing the c hanges of sign(A). no rlirection information can be obtained directly from 

A. However, when ^ is multiplied by A. the resultant vector field n becomes the normal 

compressive velocity field and all vectors in the field point to the nearest boundary edge. 

Figure o.C-d shows the results for ri = • VL and Figure 5.7-d presents the results for 

n = L - L. Therefore, the complete information for edge localization in both normal 

direction and location can be obtained from the normal compressive velocity field. Once 

the normal velocity field ^ is given, t can be obtained by rotating 7 by 90 degrees, that 

is. 

f = (-7)^ (-5.8) 

=  ~ y t  -  (5.9) 

wh(M"e - J. and ~,j are j- and // components of 

In addition to computing t and n.  A and 7 can also Ije u.sed for determining the 

boundary supports. Let // be defined as 

VL VA 

The boundary support regions are determined by 

/I < 0. (5.11) 

The examples of VA where A - and A = V-L. computed using the Gau.ssian 

differential masks with a = 1.0 are shown in Figures y.G-e and 5.7-e while images of /i 

are shown in Figures 5.6-f and 5.7-f where the dark areas represent the boundary support 

regions. 

5.2.2 New Edge Localization Method: 2-Step Approach 

The purpo.se of using 2 velocity fields, one tangential and another orthogonal to 

the l)c)undaries. is that the first field provides information in the tangential direction 
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wliilc tho secoiul one is used to locate the boundaries in the normal direction. In this 

losoarch. a 2-step approach is proposed to improve edge localization performance. Edge 

localization in the direction tangential to the boundary is used to extract the boundary 

while edge localization in the normal direction provides an adjustment to improve edge 

localization. 

Step 1 

For the given tangential and normal compressive velocity fields, f and n .  the updating 

(•(luaticjii for the particle position in the tangential direction is given by 

K f c - i l  

where is the tangential velocity at the previous position /7t-i and a is a tangential 

step size, .\fter updating the particle position in the tangential direction. is not 

guaranteed to lie on the boundary. The minor position adjustment in the direction 

normal to the boundary is required. 

Step 2 

Once, the position of the particle is updated in the direction tangential to the bound­

ary. the particle will be forced to move only in the direction normal to the boundary. 

The normal direction (7o at the initial point is approximated by the unit vector: 

"0 = (5.13) 

,(0) 

- " (3.14) 

l?fV 
The particrlc position is then allowed to be updated only along the line /: 

/(-) = -I- u q Z .  r € R. 

Edge localization in the normal direction is performed by minimizing |A| along the line 

I by the recursive equation: 

Pk = Pk )"o. 

where /7[.' " is the normal compressive velocity at the position and .3 is a normal 

steijping factor, .i > 0. The position is updated until |A| approaches zero or the 
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nunihcr of iterations i exceccis the maximum number of iterations allowed, will be 

used as the initial position for the next edge localization step in the tangential direction. 

Unlike the previous particle model, the shapes of the boundaries obtained using this 

method wil l  not  be affected by a  and 3. 

For a given boundary point po- the tangential step size a. and the normal step factor 

.1 the overall pseudo code for determining the ne.xt boundary point p\ is given below: 

3. for i := 1 U) 

4. Pi := Pi + .i{uo • rl{pi))no. 

•5. if |(7o • /7(pi)| < f then 

break. 

6. return pi. 

In {)ractice. the value of can be set to a small fixed positive luimber. 

Figure 5.8 shows the results obtained using the 2-step edge localization method with 

n and 3 = 0.1 compared with the results obtained using the 1-step edge localization 

rnetliod ba.sed on Equation 5.4. The Gaussian differential masks with a — 1.0 were used 

to generate the fields while bilinear interpolation was used to estimate the field values. 

In Figures 5.8-a and 5.8-c where n = V(|VZ,|) and n = Lu:,c^L. the differences between 

the results obtained using the 2 methods are not significant. However. Figure 5.8-1) 

shows the effect of the inertial force presented in the l-step method. Figure 5.9 illu.s-

trates bf)uiidaries extracted using the 2-step edge localization scheme at various a with 

l)ilinear interpolation used to estimate the field values. Obviously, larger a generates the 

smoother boundaries. In addition, near the corners, the extracted boundaries obtained 

using A = V-L are slightly larger than the actual boundary while those obtained using 

A = L„.,r are smaller than the actual boundary. These patterns are consistent with the 

shajjes of boundary support areas shown in Figures 5.6-f and 5.7-f. 

5.3 Practical Implementation 

This section investigates the problems encountered in the implementation of bound­

ary extraction algorithm including initialization, boundary extraction of connected re-
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Figure 5.8 Extracted boundaries using 1-step and 2-stcp edge localization 

sclieines with t = {VL)~. a = 0.1. J = 0.1 and (a) fi = V(|VZ,|), 

(b)  rl = V-LVL. (c)  n = L^.^.S/L. 
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Figure 5.9 Extracted boundaries using the 2-step edge localization sclierne 

with t = (VL)-. a = 0.1. 3 = 0.1. and (a) n = L^.^.VL. (b) 

rl = V-LVL. 

gions. estimation of boundary points, and termination criteria. In 2 dimensions, bound­

aries are in general represented in the form of planar graphs. Data structures and 

procedures u.sed in the construction of boundaries are discu.ssed in Appendix B. 

5.3.1 Initialization of Boundary Extraction Process 

In order to allow the particle trajectory to converge to the true object boundary 

rapidly, the particle trajectory nuist start at the point close to the boundary. Since the 

l)()undaries are a.ssociated with regions of large gradient magnitude, potential candidates 

for starting points of the particle trajectories are local niiiximaof the gradient magnitude 

image |VL|. However, since the local maximum points of the gradient magnitude image 

may not lie exactly on the boundaries, edge localization techniques must be u.sed to 

oi)timize the starting points. Next, the different local maxima must be evaluated in 

terms of their significance. 

In human vision, the most dominant edges are provided by high contrast objects. 

Tlierefore. in this research, a set of starting points for the boundary extraction process 

is obtained from local maxima of |VZ,| sorted in the descending order. For each starting 

p(jint. the boundary extraction process is performed until the termination criterion is 

met. The proce.ss is then restarted at the next starting point until all starting points 

are used. L'sing local maxima of |VL| as starting points, the process can be automated. 

Figure o.lO shows extracted boundaries of isolated objects. All fields were computed 
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Fifj,urf» 5.10 Example of an iruago containing isolated objects: (a) VL. (b) 

(V£)-. (c) |VZ,|. (d) extracted boundaries. 

using the Gaussian differential masks with a = 0.5. As seen, the corresponding edge 

vector field forms complete loops encircling individual objects as shown in Figure 5.10-1). 

The clockwise direction of the loop indicates that the object intensity is higher than the 

backgnHind intensity while the counterclockwise direction of the loop indicates that the 

object intensity is lower than the background intensity. Figure 5.10-c shows |VL1 with 

local maxima indicated by the signs. The resultant boundaries obtained using the 

2-step edge localization with a = 0.1. 3 - 0.05. f = (VZ,)~. and A = are shown in 

Figure 5.10-d. 
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5.3.2 Boundary Extraction of Connected Regions 

In the ease of connected regions as demonstrated in Figure 5.11-a where 3 different 

regions are labeled by the numbers 1. 2. and 3. the corresponding edge vector field 

does not form closed loops but rather a complicated "circuit" of edge vector currents as 

illustrated in Figure 5.11-b. Therefore, boundaries of connected regions can be modeled 

by i)lanar graphs whose branches and nodes correspond to boundaries between pairs of 

coniH'cted regions and junctions respectively. 

The [)roposed edge localization scheme is ba.sed on minimizatioti of |A| along with 

the boundary where different signs of A represent different regions. However, using 

sign of A to locate boundaries is not valid when dealing with the junctions where 3 or 

more regions meet. This is because description of 3 or more connected regions needs 

the descriptor having number of states to be equal to the number of regions while the 

sign fjf A has only 2 possible states, positive and negative. .\s seen in Figure 5.11-d. 

boundaries of Region 1 can be located using zero crossings of A. However, boundaries 

between Region 2 and Region 3 at junctions .A. and B carmot be located using zero 

c ro.ssings of A. Moreover, not all zero crossings of A correspond to boundaries. For 

example, in Figure 5.11-d. there e.xists no boundary at point C where zero crossing of A 

occurs. These fal.se indications are filtered out using boundary support areas which will 

be described in Section 5.4. To handle the problem of e.xtracting boundaries at junctions 

where sign(A) is not adequate, edge localization by minimizing |A| must be relaxed by 

reducing the number of maximum iterations used in the second step of odge localization. 

This allows the [^article to follow the tangential velocity field and rapidly merge with 

another boundary. Since edge localization is relaxed, the values of A a.ssociated with the 

boundary points near the junctions are not expected to be clo.se to zero. 

.Anotlier problem of e.xtracting boundaries of connected objects is illustrated in Figure 

•j.ll-e. .-V particle that follows the tangential velocity field only in one direction does 

not completely e.xtract the boundary of Region 2. This is because when the particle 

starts at P(jint D and travels along the boundary of Region 2 in the counterclockwi.se 

direction, at B. the trajectory shifts to the stronger edge vector currents in Region 1 

and does not return back to complete the boundary of Region 2. In other words, the 

particle cannot e.scape to the weak edge vector currents once it is caught in the strong 

edge v(>ctor ciurents. This problem can be solved by allowing the particle to follow the 

tangential velocity field in forward direction by using positive a and backward direction 

by using negative a. This 2-way boundary extraction tracks weak edges completely 

in both forward and backward directions. The result of 2-way boundary extraction is 
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(0) (f) 

Figiiio 5.11 Boundary extraction of connecteci objects: (a) VL. (b) ecige 
vector field (VL)-'-. (c) |VL|. (d) Z-au... All fields are computed 
using Gaussian differential masks with a = 0.5. Boundaries 
obtained using t = (VZ,)^ and A = (e) 1-way. (f) 2-way. 
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slirnvii in Figure 5.11-f. 

5.3.3 Estimation of Boundary Points 

.\nother problem encountered in boundary extraction is efficient representation of 

infornuition using minimum memory storage while preserving all significant details. In 

the [jarticle luodel. since all positions of the particle arc recorded as boundary points, the 

inotliod does not take into account the optimal locations of points along the boundary 

line. Conseciueiitly. if the step size used is too fine, extracted boundaries will con­

tain n'(lundant collinear boundary points. One way of reducing the number of points 

for boundary re[)resentation is to store only boundary points separated by a specified 

threshold distance: 

-  P A : |  > ( 5 . 1 6 )  

where AT is the iriininuini allowed distance between the recorded boundary points. 

Xevertheless. this method does not truly utilize geometrical information of the image. 

.-Vnother approach is to store corners and junctions and decimate redundant collinear 

points. 

Let .?(u) be a parameterized curve with the arc length parameter u. the tangent 

vector t of .s- is defined as 

r r 1-1 t  =  ——. ( .3 .10 
an 

The curvature k of .s is defined as 

P (I t  ( { -s{u)  
k = — = —M-

da ( l i r  

Geonictrically. local extrema of k  are corners of the curve. However, in the boundary 

e.xtraction problem, an explicit parametric equation of the boundary curve is uiuivailai)le. 

For corner detection, the curvature in Equation 5.18 can be replaced by 

r ^T.^yy ~ -^s^yLry + L L J: J-
= ZTTIJ • 

Local maxima of \L,.r \ along the curve and other features such as A can detect corners ancl 

other suitable boundary points. In practice, in high curvature areas, the values of A along 

extract(>d boundaries hardly approach zero. Therefore, corners can also be reflected by 

IcK-al maxima of |A| along the boundaries. Simplification of boundary representation can 

be done by maintaining only those boundary points that coincide with local extrema of 

the selected feature image. 
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.;:̂ £3;2ia 

Figtiro 5.12 Re.sults obtained using various boundary point estimation 
methods; (a) original imago, (b) Lf,.. (c) and (d) results ob­
tained using Ar = 0.5 and 1.0 pi.xels. (e) and (f) results ob­
tained using local extrcma of and Lu,-,r respectively. 
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Tabic 5.1 The numbers of boundary points of the results in Figure 5.12. 

Figure The number of boundary- points 
5.12-c 
5.12-d 
5.12-0 
5.r2-d 

1406 
971 
668 
993 

Fig\ue 5.12 demonstrates results oi)tained using various bountlary point estimation 

methods. .A.I1 fields were computed using the Gau.ssian differential masks with <7=1. 

Figure 5.12-1) displays the imago of Li,. where dark and white regions reflect object 

corners. In Figures 5.12-c to 5.r2-f. the 2-step edge localization method with t = (VZ,)~. 

A = Luvr- = 0.1. and .i = 0.1 and bicubic B-spline polynomial interpolation were 

used to compute particle trajectories. Figures 5.12-c and 5.12-d show results obtained 

using AT" = 0.5 and 1.0 pixels. The numbers of points recorded are 1406 and 971. In 

contrast, only 668 and 993 boundary points are recorded in the results obtained using 

local extrema of and respectively as shown in Figures 5.12-0 and 5.r2-f. Tho.se 

results are summarized in Table 5.1. 

5.3.4 Termination of Boundary Extraction 

In boundary e.xtraction. a suitable choice of termination criterion is es.sential in order 

to [)revent the process from ropeatoflly tracking the same parts of boundaries or straying 

away from the object. In this research. 4 termination criteria are used: 

1. W'lien the particle reaches the starting point of the trajectory, boundary extraction 

must be ternunated by closing the boundary loop. This condition can be detected 

t)y measuring the distance between the current position of the particle and the 

starting point. 

2. When the particle reaches some previously extracted boundaries, the process must 

1)0 terminated by creating a junction at the terminating point. 

3. When the particle travels beyond borders of the imago, boundary extraction must 

bo terminated. This condition can be detected by comparing the coordinate of tlie 

particle with borders of the image. 
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4. Ill some rare cases, namely local  t raps ,  the particle can be trapped in a small 

loop formed in the tangential velocity field or locked in the areas where both t  

and n approach zero. Therefore, if the particle luis not traveled beyond some 

small distance e with respect to the previously recorded boundary point, after .V 

iterations, the process nmst be terminated to avoid the local trap. The values of 

e and .V depend on the step size a. .V can be set to be multiples of 

5.4 Choices of Fields 

5.4.1 Boundary Localization Field (A) 

Since the 2-step edge localization method minimizes |A| along the extracted bound­

aries. zeros cro.ssings of A associated with boundaries roughly determine the shapes of 

objects. Candidate choices of A are 

L' j .LXX + -IL^LyL^y + L' iLyy  
Lu;v  =  r-> ,  r> 

^  Ljj  

and 

V"Z,  = Lj- j -  +  Lyy.  

Figure 5.13 shows the results obtained using the 2-step edge localization method 

with / = (VL)-. (\ = 0.1. and different choices of A. Bilinear interpolation was u.sed to 

approximate* the field value. .\11 fields were computed using Gaussian differential masks 

with a — I. The boundary in Figure o.lS-a obtained using A = L,r,f is smaller than the 

actual IxMinclary while the boundary in Figure 5.1.3-b obtained using A = V'L is larger 

than the actual boundary. Consequently. was combined with V"L to get 

A = -i- Lii'if (o.l9) 

to ol)tain an im[)roved result. Figure 5.13-c shows the corresponding result. .Another 

example demonstrating the effect of A is shown in Figure .5.14. .\11 fields are computed 

using the Gau.ssian differential masks with a = d and using t = (VL)~ and o = 0.5 with 

bilinear interi)olation for surface appro.ximation. .\s in the previous e.xample. the best 

result shown in Figure 5.14-c was obtained using A = V"£ + 

5.4.2 Normal Velocity Field (7) 

From Section 5.2. two critical components, the tangential and normal compressive 

velocity fields, t and n. are derived from 

r =  ( 7 ) ^  
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Figure 5.13 Results obtained using t = (VZ,)-. n = 0.1. and (a) A 
(b) A = V'L. (c) A = V'L + L,,,,. 

L ir IV •  
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(a) (b)  

Fiffuro 5.14 

(C-) 

Results ohtaiiiod using t  = (VL) 
(b) A = V'L. (c) A = V-L + L 

~. ct = 0.5. and (a) A = 

WW 
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and 

n  =  A  •  7 -

I I I  goncral. the principal choice of 7  is VZ-. However, as demonstrated by Figure 5.15-a. 

^ = VZ. is not effective when tiie fields arc generated from the multiple scale differential 

masks. Besides VL. — VA can bo used as an alternative choice for 7. Figure o.lo-c 

shows the improved result obtained using 7 = —VA. Compared with the method using 

A = V/L. the method using 7 = — VA yields better edge localization performance in the 

areas of high curvature. 

Xevcrthele.ss. in the case of connected objects. 7  = —VA also results in .some false 

boundaries as demonstrated in Figure 5.15-d. Combining the advantages ^ = VL to 

track junctions and 7 = — VA to track high curvature regions, the generalized e.xpression 

of the normal velocity field 7 is propo.scd as 

-7 = Oi(//)V£ - 02(//)VA (5.20) 

where // = 7^^ • Oi is an arbitrary function of //. and Oj is a decreasing function of 

//. One choice of ^ is given by 

7  = VL - ̂ -^VA. (5.21) 

F'igure .5.1C displays the results obtained using ^ in Ecjuation 5.21. Boundary sup-

{jort areas are shown by the dark {)ixels in Figures 5.1G-c and 5.1G-d while e.xtracted 

boundaries are shown in Figures o.lG-e and 5.1C-f. Obviously, results obtaincfl using 

-T = VL - ̂ VA are superior to those obtained using 7 = VZ, and 7 = VA in handling 

(W)ject junctions and tracking boundaries in the high curvature areas. 

5.5 Experimental Results 

From the previous section, the choice of differential masks, surface approximation, 

fields, edge localization method, and boundary representation used in this e.Kperiment 

are suimnarized in Table 5.2. The values of scale parameters depend on sizes of structures 

of inttn-est. Selection of a .scale parameter a is applied in the generation of fields. 

5.5.1 Boundary Extraction of Multiscale Objects 

Multi.scale structures contain structures at different scales that can he olxserved by 

means of using nuiltiscale filtering techniques. Boundary extraction of structures at each 
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Mi 

(c) (d) 

Figaro 5.15 Boundary extraction results obtained using a = 0.1. 
A = L,,J+V'L: (a) and (b) 7 = VL. (c) and (d) 7 = -VA. All 
fields are computed using nuiltiple scale Gaussian differential 
masks with a varying from 1 to 8. 
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(a) 

(e )  

^^ -̂•2=i 

(b) 

(0 

Figiiro 5.16 (a)-(b) Original images, (c)-(ci) f t  =  (f>)-(n extracted 

boundaries obtained using 7 = VL — 
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Tcil)le 5.2 Choices of differential masks, surface appro.xiniation method. 
fields, edge localization method, and boundary representation 
used in the experiment. 

Surface approximation method 
Bt)urKlary localization field 
Xornial velocity field 
Xonnal compressive velocity field 
Tangential velocity field 
Edge localization 
Boundary representation 

Differential masks Multiscale Gaussian differential masks and 
multiple scale Gaussian differential masks 
Bilinear interpolation 
^ = Lww + V"Z, 
7 = VL - ifiVA where ^ ̂  

2-Step approach with o =0.1 
Doubly-cotinected edge lists 

.Minimum allowed distance AT for 1 pixel 
marking boundary points 

scale can be performed using nuiltiscale differential masks of the corresponding size. The 

suitable* choice of scale parameters depends on the size of structures of interest. When 

suc h infornuition is unavailable, selection of scales can be done using global .scale aiuilysis 

or l(K al scale analysis de.scribed in previous chapters. Global .scale analysis also provides 

infornuition of existing scales that can be used to separate structures in an image at 

different .scales. Local minima of the DPSX\'R graph correspond to scales existing 

in the underlying inuige. Multiscale boundary extraction are i)erformed by e.xtracting 

boundaries of objects at each individual .scale separately. Xe.xt. several examples of 

inulti.scale boundary extraction utilizing scale information obtained from the DPSX\'R 

graphs are presented. 

The first example in Figure 5.17 shows a simulated image of a nuilti.scale siiowfiake. 

The DPS.X\'R graph in Figure 5.17-b shows 3 local niininui at a = 0.88. 4.07. and 

11.75 corresponding to 3 e.xisting .scales. Multi.scale boundary extraction of structures 

at the.se 3 scales are shown in Figure 5.18 where details at each scale are clearly seen. 

The examples in Figures 5.19 and 5.20 demonstrate multiscale boundary e.xtraction of 

nuiltiscale cluster-like objects, respectively, in the absence and presence of noise. The 

iiiuige in Figure 5.20-a is the degraded version of the image in Figure 5.19-a corrupted 

by additive white Gaussian noi.se with signal to noise ratio 2. .All 3 existing scales of 

the.se two images are detected by local minima of the corresponding DPSXX'R graphs 

in Figures 5.19-b and 5.20-b. In the absencc of noise, the results displayed in Figure 
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Figaro 5.11 linage of a multiscalc object: (a) original image, (b) DPSW'R 
graph. 

5.21 rlcarly show the boundaries of the objects at inciividual scale.s. Furtliermore. the 

e.xtractofl bouii(iaries at hirge scales shown in Figure 5.22 are unaffected by noise. 

The next e.xample in Figure 5.23 shows a real image of multiscale object. The image 

con.sists of .3 scale structures as reflected by 3 local minima in the DPSW'R graph in 

Figure 5.23-b. Bounflary e.xtraction results obtained using the scale parameters selected 

from the local minima of the DPSXX'R graph are shown in Figure 5.24. .-Vs in the three 

I^revious examples, details at each .scale are precisely obtained. 

5.5.2 Boundary Extraction of Real Images 

In general, natural images do not always contain multiscale structures. Selection of 

a suitable scale can be difficult. Moreover, natural images usually contain fuzzy objects 

with different degrees of blurring rendering the use of single-scale differential nuisks 

ineffective. In these eases, multiple scale differential masks can be employed to handle 

edges with different degrees of blurring and to simplify the scale selection proce.ss where 

a rough range of a can be specified instead of using a single value of a as in the case of 

a single scale differential mask. Several examples of real images and the results of the 

[jroposed boundary e.xtraction are given next. The analysis of aerial, facial, and medical 

images are presented. In Figures 5.25 and 5.27. the nuiltiple scale Gaussian differential 

nuisks with a varying from 0.5 to 2.0 were u.sed. For the images containing edges 

with different degrees of blurring shown in Figures 5.29 and 5.31. the nuiltiple scale 

Gau.ssiati differential nuisks with a varying from 0.5 to 4. were u.sed. The l)Oundary 
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(e) (f) 

Figurr 5.18 Gradient images and extracted boundaries of the image in Fig­
ure 5.17-a obtained using: (a) and (b) a = 0.88. (c) and (d) 
a = 4.07, (e) and (f) a = 11.75. 
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Figure 5.19 Image of multiscale objects: (a) original image, (b) DPSW'R 
graph. 

(a) (b) 

Figure 5.20 Degraded image with SXR = 2 of tlie image in Figure 5.19-a: 
(a) original image, (b) DPSXV'R graph. 
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(cI) 

( f )  

Figiiro 5.21 Gradient images and extracted boundaries of the image in Fig­
ure 5.19-a obtained using: (a) and (b) a = 0.78. (c) and (d) 
a = C.52. (e) and (f) cr = 27.84. 
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Figure 5.22 Gradient images and extracted boundaries of the image in Fig­
ure 5.20-a obtained using; (a) and (b) a — 1.72. (c) and (d) 
a = 7.34. (e) and (f) a = 27.84. 
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Figure 5.23 Multiscale objects: (a) original image, (b) DPSW'R graph 

point estimation method based on the minimum allowed distance was used for storing 

the results in Figures 5.30 and 5.32 while the method based on local extrema of was 

used in Figures 5.26 and 5.28. In these e.xamples. most of boundaries were successfully 

e.xtracted while very few incomplete boundaries exist. In Figure 5.30. sharp edges and 

blurred edges are captured with subpi.xel accuracy. The algorithm has no difficulty in 

handling junctions and different topologies of boundaries of multiple connected objects. 
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(e) (f) 

Figure 5.24 Gradient images and extracted boundaries of the image in Fig­
ure 5.23-a obtained using: (a) and (b) a = 0.5. (c) and (d) 
a — 4.77. (e) and (f) a = 18.81. 
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•"jiS-

Figure 5.25 Original image (above) and gradient image (below). 
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Figure 5.26 Extracted boundaries 
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Figure 5.27 MRI image (above) and gradient image (below). (From the 
Whole Brain Atlas, http://www.med.harvard.edu/AAXLIB 
/home.html. Courtesy of Keith A. Johnson. M.D.. and J. Alex 
Becker.) 
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Figure 5.28 Extrcictecl boundaries. 
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Figure 5.29 Original image (above) and gradient image (below) 
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Figure 5.30 Extracted boundaries. 
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Figure 5.31 Original image (above) and gradient image (below). 
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Figure 5.32 Extracted boundaries. 
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CHAPTER 6. SUMMARY 

From scale analysis to boundary extraction, a framework for miiltiscale boundary 

extraction has been established. Scale analysis involves analysis of the sizes of structures 

(Miibedcled in an image. Two major concepts of .scales, global and local scales have 

been addres.sed. Global scales refer to resolutions at which objects in an image e.xhibit 

distinctive glofjal patterns while local scales arc related to sizes of local structures. This 

dissertation pre.sents tecliniciues for analysis of global and local scales and nuiltiscale 

boundary extraction. 

-A. freciuency domain approach for global scale analysis based on the diffcrentiiil power 

spectrum normalized variance ratio (DPS.W'R) is developed. .\ family of nuiltiscale 

differential masks of a contituium of sizes is u.sed to generate rnulti.scale representation 

of an image. For global scale detection, the [jroposed method depends on local minima 

of the DPS.W'R graph. The techniciue is robust, reliable, and provides accurate estimate 

of scales even in the presence of noise. E.xperimental results indicate that the dominant 

global scales are reflected by local minima of the DPSWR graph while weak global scales 

are reflected by local e.xtrerna of the slo[)e of the DPS.W'R graph. The .scale parameters 

obtained from local minima of the DPSW'R graph are suitable for nuiltiscale l)oundary 

e.xtraction. 

The second issue related to the {)roblem of scales in image analysis is sizing local 

structures. Lcjcal scale analysis determines the size as well as position of structures based 

on local maxima of the scale-space differential structure image. Information obtained 

from Icjcal scale analysis can be used for blur estimation and adaptive .scale selection for 

analysis of loc al structures. In general, local .scale analysis requires exhaustive search over 

scale-space domain and hence is computationally e.xpensive. .\n alternate method for 

utilizing nuiltiscale data based on summation of image features with respect to the scale 

parameter is propo.sed. This leads to tlie development of the new concept, the multiple 

scale differential masks derived by the summation of normalized differential masks of 

exj)onentially increasing sizes. The method yields details at several scales simultaneously 

and therefore pre.serves structures at those scales. From structures tliat survive over a 
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rango of scales, the operator eliminates tlie problem of shape distortion occurring when 

the large size difference operators are employed. On the other hand, spurious details that 

do not survive over change of .scales are eliminated. Tho multiple scale differential mask 

r(>ciuires a range of scales of interest to bo specified instead of a single scale resulting in 

increasing the scale selection tolerance. In addition, the computational effort needed to 

(•()m{)ute the multiple .scale differential masks is slightly greater than that required in 

rlie comj.Mitatioti of the conventional nuiltiscale differential mask. 

Finally, a generalized boundary extraction algorithm is given. The method is devel­

oped from the model of particle motion in a combined orthogonal velocity field. Two 

velocity fields, the tangential and the normal compro.ssive velocity fields, recjuired in the 

model are generated from the boundary localization field and tho normal velocity field. 

General e.\j)ressions as well as suital>le choices of the fields are given. To eliminate the 

inertial effect of the earlier method, the edge localization algorithm is separated into 

2 independent steps, one locates edges in the tangential direction and the second step 

locat(\s edges in the normal direction. Boundary extraction is ba.scd on minimization 

of the absolute vahu>s of the boundary localization field along the particle trajectory. 

The pn){)erries of the tangential velocity field arifl the normal compressive velocity fielcl 

guarantee that the particle will travel along the paths close to object boundaries. The 

pnj[)()sed boundary e.xtraction method is sim[)le. fast, reliable, and yields results with 

subpi.xel accuracy. 

Beside edge localization, otlun" rt'lated issues including estimation of boundary points 

and boundary repre.sentation are al.so addre.ssed. The boundary points estimation tnethod 

eliminates redundant boundary points to yield efficient boundary rei)re.sentation. Two 

schemes, one based on the minimum allowed distance and another ba.sed on image fea­

tures such as corners, arc itnplemented. The method based on inuige features can sig­

nificantly reduc(> the lumiber of boundary re{)resentation points while maintaining the 

overall object shape. For boundary representation, e.xtracted boundaries are represented 

in the form of planar graphs using doubly-connected edge lists which can represent 

l)oundaries of objects of arbitrary topologies. 

Th(> methods addre.s.sed in this dis.sertatioti are parts of intermediate level image 

analysis. Using the proposed scale analysis techniques for scale .selection in conjunction 

with the boundary e.xtraction algorithm, nnilti.scale image .segmentation is achieved. In 

real applications, further proces.ses such as image interpretation utilizing data obtained 

from image segmentation are employed to accomplish the final goal of image analysis. 
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APPENDIX A. 2-DIMENSIONAL SURFACE 

APPROXIMATION 

Bilinear Polynomial Interpolation 

For tlic 2-ciirurnsio!ial equally spaced discretizeci field /. bilinear polynomial interpo-

laticjii estimates the field value at a particular point y) from the field values at the 4 

neif2;hboriiig observable points {n. ni). (n -r I, rn). (n. rn + I), and (n -r I. rn -t I) as shown 

in Figure A.l-a by 

1 1 
.'/) = mi b,iA.r)bj{A!j)fin + /. rn + j) 

1=0j=Q 

= X] S -i- "> J) 
1=0 J=0 

where A./' = .r — n. Aij = ij — rn while l),.i = 0.1 are the polynomial int(>r|)olation 

ijending functicjus. For linear interpolation, these functions are given by 

6o((/) = 1 - // 

and 

/>i(u) = (Z. 

and Z?, J = l),{A.r)l>j{Atj). .\'ote that indices ri and rn in Equation .\.l are integer parts 

of ./• and // resjjectively where ri < .r < n + i and rn < tj < ni + i. Geometrically, 

interpolation coefficients D, j are areas of rectanglcs as illustrated in Figure .\.l-a. 

Bicubic B-Spline Polynomial Interpolation 

.-Vlt hough bilinear interpolation provides a continuous appro.ximation of the 2-diniensional 

held, the method u.ses only 4 neigliboring points to estimate the field value causing di.s-

continuities in the first order derivatives of the field. An alternative method that provides 

the contimious api)ro.Kiiuations of the field and its clerivatives up to order 2 is the bicubic 
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Figure A.l (a) Interpolation points and coefficients of bilinear interpolation 
and (b) control points of bicubic B-spline interpolation. 

B-spline polynomial approximation; 

/(•'-• !j) = ^ ̂^,(A.r)6j(A/y)/(n -r / - l.m + 7 - U (A.l) 
1=0 j=0 

where rlie IxMiding functions h, are given by 

0 

= p(4 - G;/'-+ ;3«'') 
0 

/ } - , ( u )  =  - ( L - r  3 / 1 - r  3tr — 3u'^} 
6 

and 

= 1"'^-
G 

In Eciuation .A.l. the neighboring points (n + / — 1. rn + J — 1). '.J = 0 .3. are 

not used as the interpolated {joints but control points of the B-spline surface. As a 

result, the a{)proximated surface does not pass through but is confined to the convex 

hulls formed by these points. Despite this configuration, the bicubic B-spline surface 

[jrovides an ac curate polynomial approximation of a 2-dimcnsional discrete field. Using 

the field values at IG neighboring points shown in Figure A.l-b. the bicubic B-spiine 

interpolation yi(>lds a smoother contiinious approximation compared to that obtained 

using bilinear interpolation. 
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APPENDIX B. DATA STRUCTURES AND PROCEDURES 

FOR CONSTRUCTING BOUNDARY REPRESENTATION 

Drsi<2,u of data striicttircs and schemes for representing coni{)lete ijounciary infor­

mation is cnicial. In general, secjiiences of bonndary points are nsed for representing 

hoiiiidaries. However, this repre.sentation is inefficient in the cjuse of boundaries of con-

nc'cted regions with junctions. Dne to different topologies of connected regions, special 

I)roccclures are needed for handling junctions. In addition to the problem of handling 

jniic tions. detection of a state when a particle reaches the previously e.vtracted bound­

ary re(iuires e.xhaustive search to find the e.Ktracted boundary point which is closest to 

the current particle i)osition. However, when the nutiil)or of extracted boundary {)oints 

bec(jines large, the computational time needed increases linearly. Therefore, a heuristic 

algorithm is needed to retluce the search time. 

Doubly-Connected Edge List 

I I I  general, a planar graph is used for representing a network and a boundary. .-V gra[)h 

consists of vertices, edges, and faces as shown in Figure B.l-a. .A. verte.x stores position 

information and properties as.sociated with it while an edge is a line .segments connec-ting 

a pair of vertices. .A. face is a maximal connectefl subset of a plane that does not contain 

a v(>rtex inside. In other words, a face is an open polygonal region bounded by edges 

and vertices. .-V graph is consider to be planar if there is tio crossing between a pair 

of edges. In image segmentation, a face corresponds to a .segmented region while edges 

and vertices represent boimdarics between regions. One popular structure that u.sed for 

graph re{)reseutation is the doubly-connccted edge li-it [19]. The doubly-c-onnected edge 

list consists of 3 collections of records: vertex, half-edge, and face lists. Data structures 

of the doubly-comiected edge list are summarized below: 

1. A vertex record. Each vertex record contains a coordinate of vertex r and the 

half-edge pointer, namely the incident edge, to one of half-edges that has v as its 

origin. 
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2. A half-edge record. Each eclso i.s roprcsontecl by the corresponding pair between 

half-edge and its twin as shown in Figure B.l-b. Each half-edge has direction 

ojjposite to that of its twin and bounds to the face on its left side. A record of the 

half-edge c contains a vertex pointer to the origin of e and 3 half-edge pointers 

to its twin. next, and previous half-edges respectively as shown in Figure B.I-b. 

It also stores a face pointer to the face that e bounds, namely the incident face. 

Each half-edge has its unique twin. next, and previous half-edges. 

3. A face record. Each face record contains oiu* half-edge pointer, namely the 

incident edije. selected from one of the half-edges having / as its incident face. 

This struc ture is slightly different from one that u.sed in [19] where two half-edge 

pointers, inner and outer half-edges are u.sed. [19]. 

The advantages of using the doul)ly-conriected edge list are that the structure can 

i(>preseiu .V-dimensional graphs of all topologies and support constructing and infor­

mation inciuiritig operations. The overall structure of the doubly-connected edge list is 

dcnujustrated by the example in Figure B.2. Tables B.l to B.3 show all lists of records of 

the graph in Figure B.2. .A. boundary of eacli face can be tracked by following half-edges, 

starting from the inc-ident edge of the face, until the loop is completed. In cooperating 

with the proposc'd boundary e.xtrac-tioti algorithm, the cloubly-connectc>cl edge list sup­

ports all operaticjtis needed fcjr constructing Ijounclary repre.sentation which are listed 

l)elow. 

Initialization 

Fen- a given starting point pq . the boundary graph is created as two half-edgc\s are 

generated and cormected tcj /^. When the boundary is not terminated, there always 

exist the half-eclges that attaches to the end vorte.x of the boundary which are ready to 

connc>c t to the ne.xt e.xtractecl boundary point. 

1. Create two new half-edges. e\ and f-,. 

2. .A.ssign /A) tcj the oricjin of Ti. 

3. .A.ssign r\ to the incident edge of Pq. 

-1. .Assign C\ to the tivin. next, and previous of e>-

•j. .Assign (~j to the twin. next, and previous of ^i. 

G. .Add /)q to the vertex list and Ci and c> to the half-edge list. 
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Vertex 

Edge 

, Twin of e 

Face 

Previous of e 

(b) 

Figure B.l (a) Planar graph, (h) half-oclgo and its twin, previous, and next. 

^3 

Figure B.2 .A. graph represented by a douijly-connected edge list. 
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Table B.l A face list of the graph in Figure B.2. 

Face Incident edge 
fi Po 
h 
h ^1 

Table B.2 .A. vertex list of the graph in Figure B.2. 

\'ertex Coordinates Incident edge 

P\ (1.5.3.5) f'o 

P-2 (0.0.2.0) 

P:i (0.0.0.0) 

P\ (3.0.0.0) 

Pr, (3.0.2.0) 

Tal;le B.3 .A. half-edge li.st of the graph in Figure B.2. 

Half-edge Origin Twin Next Previous Incident face 
("i P\ f> h 
r> Pr, f'c, n h 

P> c- f^\ ft h 
("i P.\ ^1 h 

Pr> f^\ Cs f'.) /i 
fv, P> ^"^11 fi 
C-; P:\ r-i f 10 /. 

P\ p? fx 
f""') P\ ^1 fT-, /i 

'•'10 P2 ^12 c~ fx 
<""^11 Pr. ei2 fi 

Pi r:^iO ^11 f> 
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. 

(i>) 

Fif!;un' B.3 ExtPiiclins tho l )Ouriciary: (a)  I>oforo. (b) aftor. 

Extending a Boundary 

To arid tho iiowly oxtractod boundary point pk to tlic current boundary, two new 

half-odfros linking pk to the boundary are c reated. Lot C{ l)e the inc ident half-ecigo of tlie 

vortex at tlio end cif the bciundary to l)e oxtendecl. As sliown in Figure B.3. oxten.sion 

of tho boundary c-an bo done a.s follcnvs: 

1. Create two new half-edges r„ and 

2. .Assign pk to the aricjin of r,, and tho origin of the twin of fi. 

•i. .-V.s.sign r„ to tho incident rdgn p^. 

1. .\.ssign OJ to tho twin and next of c„ and a.ssign to tlio tiuin and previous of Q,. 

3. .\.ssign r,, to tho next of fi and assign to tho previous of r„. 

G. .Assign tho twin of fi to tho next of and a.ssign C), to tlio previous of tiie twin of 

t. .Add pk to the vertex list and and ft, to the half-cxigo list. 

Closing a Boundary 

When tho i)articlo reaches its starting pc^int. the bcjundary is clcj.sed by linking the 

half-edges to tho two end vortiees of tho boundary as shown in Figure B.4. Let pa and 

p„ bo tho start and end vertices respectively. 

1. f~"„ := the incident edge oi po 
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(a) (b) 

Figiiro B.4 Closing the boiiiulciry: (a) before, (b) after. 

2. := the incident edge, of p,, 

3. .\ssign Pq to the orujin of tiie tunn of c„ 

4. .-Vssigii r*„ to the preciouti of a.s.sigii Vq to tlie next of <•>,. 

•J. .A.s.sigii the tirin of r„ to the next of the tunn of Cq and a.ssign the tiirin of to the 

prcrions of the twin of f",,. 

C. L'i)(hite inridcTit faces of TQ and its tmin. 

Inserting a Junction. 

In.serring a junc-tion can be done by niariipnlating the records. .After a junction is 

inserted. th(> incident faces of half-etiges connected to the junction are needed to be 

uixhited. Let />o. n. and are a verte.x and lialf-edges where a junction will be inserted 

as sliown in Figure B.5-a. Let and r„ be the end verte.x and its incident edge of 

the current bcjundary that will connect to />o to create a junction. The algorithm for 

creating a junction is given below: 

1. .A.ssign /7o to the orujin of the lurin of c„. 

2. .A.ssign c > to the next of and a.ssign to the previous of C2-

3. .A.ssign f~i to the previous of the twin c,, and assign the twin of to the next ol 

1. L'pdate incident faces of c„ and its twin. 
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Figaro B.5 Inserting a junction: (a) l)oforo. (b) after. 

Updating an Incident Face 

I'pdating the incident face is performed when boundary is closed or a junction is 

inserted. The incident faces of all half-edges connected to the half-edge cq and its twin 

tliat make the last connection are needed to he updated. 

1. r, ;= To. 

2. if the incident fact', of r\ is mill 

then Create a new face /,. 

.-Vdd /i to the face list. 

3. else 

/[ := the incident facc of . 

4. .A.ssigti r\ to the incAdcnt cjltjr of fx. 

h(ir('2f(i(f s := true. 

G. do 

if the incident face of c*i ^ null and the incident facc of ci / /[ 

then Remove the incident face of ci from the face list. 

.\.ssign /i to the incident face of cy. 

if c\ = the tiuin of «^o 

then harc'If (irc.'i fal.sc. 

("i := the next of e^. 
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7. while ("i cq. 

8. if harc'lf acc = true 

9. then := the twin of ^o-

10. if the incident face oi Ci is null 

then Create a new face /[. 

Acid /i to the face li.st. 

11 .  e l s e  

/i ;= the incident faceQic\. 

12. .\s.sign Ci to the incident edge o[ /[. 

I •3. do 

1-1. if the incident face of ^ null and the incident face of Ci ^ fi 

then Remove the incident face of ri from the face list. 

1-"). .A..ssign fi to the incidejit face of e^. 

IG. r*! ;= the next of f\. 

17. while f~i ^ the twin of f^o-

Detection of the Condition for Creating a Junction 

In order to detect the condition for creating a new junction, an exhaustive search 

is conductcHl to find the boundary point clo.sest to the current particle position. How­

ever. \vhc>ii the number of extracted boundary points becomes large, computational time 

reciuired for the exhaustive .search grows linearh". heuristic algorithm that reduces 

searching time can be done by dividing the whole image into smaller areas and assigning 

to each area a list of boundary points located inside the area. When the particle enters 

eac h area, only the boundary points in tlie area arc needed to be tested. collection 

of such areas is called the trajectonj map. A trajectory map contains an array of size 

(A + 1) X (.\/ -f 1) of T-pi.\els where A' x M is a corresponding image size. Each T-pixel 

occupies an area of size 1 image pixel which cjverlaps each neighboring image pixel by a 

cjuarter pixel as shown in Figure B.C. Since the size of a T-pixel is small enough so that 
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Image pixel 

T-pixel 

Exiracicd boundary 

Figure B.6 A trajectory map. 

IK) more tliaii otie particle trajectory can pass through eacli T-pixel. instead of record­

ing all boundary points inside the T-pixel. only one vertex pointer, namely the center 

r( rfcx. to the boundary [)oint closest to the center of the T-pixel and inside the T-pixel 

is recorded. Since vertices are connected by half-edges, all vertices inside each T-pixel 

can !)(' tracked via the center vertex. If no boundary pa.sses through the T-pi.xel. the 

null value will be a.ssigned to the center vertex pointer. The overlapping configuration 

ijetween image pixels and T-pi.xels is to ensure that the [)article trajectory is most likely 

to [)ass to the center of the T-pixel since boundary points usually locate near borders of 

image pi.xels. The [)seudo-code for detecting the condition for creating a junction and 

terminating the boundary is summarized below. 

When the [)article enters a T-pixcl at position po. the condition for creating a junction 

is needed tcj he tested only if the number of connected vortices of the renter vertex oi T 

is greater than 1. Let eQ bo the incident edge of the center vertex T. The procedure 

returns the [jointer to the verto.K inside T tluit is closest to pq as well as the distance 

and the status of the condition for creating a junction. 

L if fi) is null or the innnber of connected vertices of the center vertex < 2 

then rreatiiKj.janctioji := fal.se 

2. else 

3. ;= 

1. f [ := f'O-
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o. Pi := the origin of ^i-

G. dtnin := tJit" distance between Pq and p\. 

'  •  Pui in  •  — Pq •  

S. do 

9. do 

10. ci := tlie next o[ Ci. 

11. Pi := the origin of Cy. 

12. if Pi is inside T then 

13. if tiie distanc e Ijetween po and pi is less than r/„„„ 

then (l„un '•= the distance between po and pi. 

P i F i i n  • —  P i -

11. while Pi is inside T. 

lo. ("2 ;= the next of tiie twin of c-,. 

IG. := the next of f i­

ll. while c , 7^ f^o-

IS. if (•/„„„ < f 

then creating.junction := true. 

19. else 

crr.ating.junction := fciL^iC. 

20. return crcatingjunction. p„,„i. and d,nin-
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Complete Boundary Extraction Algorithm 

Tho psoiulo code for the overall boundary extraction algorithm is given in this section. 

The in[)Uts are the tangential and normal compressive velocity fields, the tangential 

step size n. a list of starting points Pstart- ^nd the feature image used for marking tho 

btjundary points. 

1. while tho number of extracted boundaries < 

2. do 

3. Got Pq from tho list Pstart-

4. until pn is in tho T-pixel that has no boimdary on it. 

5. .A.dcl Pq into the vertex list. 

G. Creating tho boundary using po starting point. 

7. .A.ssign Pq to the T-pixel that po lies on. 

S. direction fortrard. 

9. f rdck'lifdij = /(d.sc 

10. do 

11. Pi :=/;(). 

12 .  wh i l e  j)i is inside an imago 

13. ii direction — fortrnrd 

then/J 1 := fincLnext_for\vard_bovmdary_point(/.)i). 

14 .  e l s e  

Pi := find_next.back\vard_boundary-point(/>i). 

15. if Pi is outside an imago 

then L'pdato the incident faces of the current boundary, 

break. 
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16. else if the boundary point recording condition at is met 

then Extend the current boundary to pi. 

Add Pi to the vertex hst. 

17. ifp, is trapped in a local trap 

then Update the incident faces of the current boundary, 

break. 

IS. else if pi reaches the starting point of some previous boundaries 

then Close the boundary by linking 

the current boundary to p^. 

Update the incident faces of the current boundary, 

break. 

19 .  e l s e  i f  the condition for creating the juncrtion at px is met 

then Insert a junction by coiuiecting the previously marked 

verte.x to the nearest vertex. 

Update the incident faces of the current boundary, 

break. 

20. else 

21. i fp ,  is marked and is closest to the center of the current T-pixel 

then A.ssign p\ to the incident vertex of 

the current T-pixel. 

22. if direction = forirard. 

then direction := backward. 

23. else 

track'licaij := true. 

2-1. while track'licaij — fal.se. 

Figure B.7 demonstrates the use of the doubly-connected edge list for boundary rep­

resentation of nniltiple connected objects. The boundary of each region can be obtained 

by retrieving the boundary of the corresponding face as shown in Figures B.7-b to B.7-e. 
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( c )  

Figure B.7 Bouiichirics of niultiplo corincctod objects represented using a 
doui>iy-connccted edge list: (a) boundaries of all faces, (b) to 
(e) boundary of each face. 
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