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ABSTRACT

The complete analysis and interpretation of the information in image data is a com-
plex process. This dissertation presents 3 major contributions to image analvsis. namely.
global multiscale detection. local scale analysis. and boundary extraction. Global scale
analysis is related to identification of the various scales presented in the image. A new
approach for global scale analysis is developed based on the differential power spectrum
normalized variance ratio (DPSNVR). The DPSNVR is the ratio of the second order
normalized central moment of the power spectrum of the image to that of the multiscale
differential mask. Local maxima in DPSNVR graph directly indicate the global scales
in the image. Local scale analvsis performs a more detailed analvsis of the edges to
eliminate effects of blurring. A method based on mutilscale feature matching has been
proposed. Details obtained at all scales are treated using a scale invariant normaliza-
tion scheme. Besides local scale analyvsis. a multiscale data fusion algorithm has been
implemented which leads to the new concept of multiple scale differential masks. The
multiple scale differential mask generated using a range of scale values possesses the re-
markable shape preservation property which makes it superior to traditional multiscale
masks. Finally the complete sequential boundary extraction algorithm based on particle
motion in a velocity field is presented. The boundary extraction algorithm incorporates
edge localization. boundary representation. and automated selection of boundary extrac-
tion parameters. The global scale analysis techniques in conjunction with the boundary

extraction algorithm provide a multiscale image segmentation algorithm.



CHAPTER 1. INTRODUCTION

Since the invention of digital computers. the world has changed unimaginably. Dig-
ital computers linking mathematical theories to real world applications have opened up
a new era of science and technology. The powerful computational capability of today’s
computers enables many highly complex tasks that were once performed by human
operators. One of the rapidly growing areas. digital image processing. is a result of
a marriage between multi-dimensional signal processing theory and digital computers.
Digital imagery. in its general form. refers to a discretely sampled version of a continu-
ous multidimensional scene and is typically represented by an array of discrete numbers.
Digital image processing ranges from low level processes such as image acquisition and
image enhancement to highly sophisticated tasks such as object recognition and scene
interpretation similar to those performed by a human brain. Today. digital image pro-
cessing has been emploved in a variety of applications ranging from movie production
to deep space exploration.

An important area of digital image processing involves analyvsis of pictorial informa-
tion contained in image data. Image analysis basically consists of three steps: low-level
image acquisition and enhancement. intermediate-level image representation. and high-
level image interpretation. The low level processing functions as a front-end of a visual
svstem including sensing and preprocessing that supplies images in suitable formats.
The intermediate level processing. involving feature extraction and representation. re-
trieves and converts important features from an image into explicitly organized data
structures. This step drastically reduces amount of data to be analvzed while retaining
useful structural information for further analysis. Finally. the extracted information is
used in conjunction with a knowledge-based system for less explicit but more abstract
high-level scene interpretation. The final process involves the labeling. recognition. stor-
age. interpretation. and classification of extracted objects. In terms of sophistication.
this task is analogous to the recognition and interpretation functions of a human brain.

In general. image analysis uses differential structures such as corners. lines. and edges

since these structures are natural representation of pictorial information. For instance.
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edges separating objects from background determine object location and extension while
corners determine the shape of an object. Differential structures are constructed using
differential operators and methods of differential geometry. Among these differential
structures. edges are the most important since objects can be concisely described by a
sequence of edges. In fact. biological visual systems are known to exploit edge informa-
tion. Processes such as edge detection and boundary extraction that provide structured
edge information are essential for image analysis. Nevertheless. since an image usually
comprises multiscale structures. feature extraction has to handle the problem of scale.
Objects in an image may have different meanings depending upon scale of observation
and thus analysis of an image inevitably requires scale of interest to be specified. With-
out prior knowledge of scale of observation. the problem of scale selection increases the
complexity of image analysis. Therefore image analysis essentially requires not only
processing methods for enhancing image data but also a strategy for identifving scales
of objects in the image. This dissertation focuses primarily on the problem of scale.
multiscale differential operators. edges. and boundary extraction algorithm. all of which
are crucial in image analysis.

In the previous work [22]. multiscale differential operators based on image moment
vectors and boundary extraction algorithm based on particle motion in a force field were
developed. The boundary extraction algorithm in conjunction with the edge operators
that possess size adjustable features is capable of providing boundary information with
sub-pixel resolution at a corresponding scale if the scale parameter is selected previously.
The global scale analysis method based on statistical characteristics of edges in the scale
domain was proposed for scale detection and selection. However. this strategy lacks the
development of a theory for the analvsis of global and local scales. In addition. the
previous boundary extraction algorithm was performed at a single scale in each pass
and required several user input parameters.

In this dissertation. the earlier work has been extended to obtain complete multiscale
image analyvsis. General theories for global and local scale analysis and a general scheme
for boundary extraction are also developed. Major contributions in this dissertation are
1) a mathematical scheme for the analysis of global scales. 2) a mathematical scheme for
the analyvsis of local scales and the generalized multiple scale differential operator. and
3) the generalized boundary extraction algorithm based on particle motion in a veloc-
ity field and implementation of 2-dimensional sequential boundary extraction algorithm.
The concept of global scale analysis based on the differential power spectrum normalized

variance ratio is introduced. The behavior of edges in scale-frequency domain reveals



information of existing global scales embedded in an image. In contrast to global scale
analysis. local scale analysis is based on feature matching of regional properties of an
image and is performed in scale-space domain. Local scale analyvsis leads to the novel
concept of multiple scale differential masks that extract features of multiple scales simul-
taneously. By preserving structures that survive over a range of scales. the new operator
eliminates the problem of shape distortion introduced by large size differential operators.
At the same time. spurious details that do not survive over a range of scales are sup-
pressed. The use of multiple scale differential masks significantly simplifies the selection
of scale for image analysis and hence reduces computational effort. For boundary ex-
traction. the generaiized algorithm developed from the previous model based on particle
motion in a velocity field is improved by incorporating a new edge localization feature.
The method can be used in conjunction with a novel multiple scale differential operators
to increase the scale selection tolerance. Practical considerations are taken into account
in developing a stable boundary extraction algorithm and suitable data structures for
boundary representation. Several termination criteria that enable the algorithm to run
smoothly are implemented. In addition. compacted boundary representation based on
image features such as corners is also included. In summary. a complete framework for
multiscale image analysis is established.

The rest of this dissertation is organized as follows. In Chapter 2. a literature review
of previous work related to differential structures. scale-space analyvsis. edge detection.
image segmentation. and multiscale image analysis are presented. Chapter 3 describes
several techniques for global scale analysis. The concept of feature matching in local
scale analvsis and the new multiple scale differential operators are introduced in Chapter
4. The generalized boundary extraction algorithm based on particle motion in a velocity
field and its practical implementation are presented in Chapter 5. Concluding remarks

are given in the final chapter.



CHAPTER 2. REVIEW OF LITERATURE

2.1 Differential Structures and Multiscale Differential

Operators

Differential structures of an image play an important role in image analvsis. For
example. the zero order differential structure of an image is the image itself. the subject
of image analyvsis. The gradient and curvature of an image are the first and second order
differential structures of an image respectively. Since areas of high gradient magnitude
correspoud to object edges while local extrema of image curvature correspond to object
corners. the significance of gradient and curvature as natural descriptors of edges and
corners is obvious. Derivatives of an image with respect to spatial position provide
crucial information of differential structures associated with spatial positions. Such
information is useful in image analysis to indicate where to look for features embedded
in an image. Interestingly. biological visual svstems also exploit differential structures.
especially edges. since typical receptive fields found in animal eves act as differential
operators [46]. In fact. differential structures are natural descriptors of image structures.

Differential operators are fundamental tools in the analysis and svnthesis of differen-
tial structures. Digital image analysis algorithms rely on primitive difference operators
of small window sizes [10. 27. 31. 39. 40. 42. 69. 72] that mimic mathematical differ-
ential operators by utilizing the smallest neighborhoods available in a discrete image.
For instance. the Sobel. Robert. and Prewitt opeators are implemented on masks of size
3 x 3 pixels [31. 39. 40]. Although. implementation of these operators is intuitive and
simple. it overlooks the fundamental problem of physical observables. the problem of
scale. In an image. all objects are associated with scales. Objects in an image may have
different meanings depending upon scale of observation. Objects of large scales may
comprise objects of smaller scales or individual objects of small scales may be consid-
ered meaningless at larger scales. Hence. in image analysis. all operations require scales
of interest to be known. Differential operators using fixed size difference masks do not

posses the flexibility to handle multiscale feature extraction problems. Without taking



into account the scale of objects. operators working at fixed small scales are vulnerable
to noise and ineffective in capturing image structures at arbitrary scales.

Marr and Hildreth [62] introduced two fundamental concepts of multiscale image
analvsis. First. in natural images. intensity changes occur over a wide range of scales.
To deal separately with each scale. it is necessary to filter the image in order to reduce
the range of scales over which intensity changes take place. Second. it is essential to
utilize pictorial information at several scales. Several attempts were made to develop
multiscale differential operators using larger. smoother. and size adjustable difference
masks capable of rendering image derivatives at different scales with better noise sup-
pression ability. For example. Rosenfeld and Thurston [71] introduced the solution to
multiscale edge detection problems based on variable size difference operators called the
difference of boxes (DOB) which is the difference between the average of pixels in a
pair of non overlapping variable size square neighborhoods. Macleod [60] and Argyle 2]
suggested the use of smoother differential operators for edge detection in noisy images.
Macleoud's operator approximates the first derivative of the two-dimensional Gaussian
function using the difference of two displaced two-dimensional Gaussian functions while
Argvle suggested the use of a one-dimensional split Gaussian function. Other multiscale
differential operators include moment based edge operators [23. 57. 58. 59. 68. 78| and
multiscale Laplacian operators [61. 62]. Each technique differs from the others only in
the order and configuration of the masks. Canny [9] proposed 3 criteria for evaluating
the performance of multiscale differential operators: i) detection by maximizing out-
put signal to noise ratio, ii) localization by minimizing the root-mean-square distance
from detected edges to true edges. and i) the multiple response constraint for reduc-
ing the number of spurious extrema. An efficient approximation of Canny’s operator is
the sampled version of the first derivative of a two-dimensional Gaussian function or the
Gaussian differential filter [26]. Because derivatives of a Gaussian function possess many
good characteristics including causality with respect to resolution and can be computed
with less effort. they have been widely used in many applications.

[n general. multiscale differential operators have the capability to render differential
structures at any desired resolution. These techniques have improved noise suppression
performance with a trade off between the accuracy of edge localization and level of noise
suppression. This presents the problem of scale selection where one must compromise
between maximizing signal strength at a particular scale while minimizing signal strength
at other scales. The success or failure of image analysis relies strongly on the choice of

scale parameters used in multiscale masks.



2.2 Scale-Space Theory and Scale Analysis

The mathematical framework for the analysis and selection of scales appears in scale-
space literature [4. 26. 43. 48. 49. 73. 79. 82]. The scale-space theory is based on the
concept that measurement and interpretation of the physical world cannot be completed
without specifving the scale of an object. The significant difference between observation
made in the real world and a pure mathematical concept is that the mathematical
definition of a point having an infinitesimal width and the smoothness constraint of
the underlying function cannot be achieved in real world observations. In other words.
mathematical rules are dimensionless and scale independent. Witkin [82] introduced the
term “scale-space” representation as a result of embedding an image in a scale-parameter
family of smoothed images. A scale-space image is obtained by convolving the image with
Gaussian kernels over a continuum of scales. Koenderink [43] pointed that convolving
the Gaussian keruel with the image is equivalent to the solution of the isotropic diffusion
process with the original immage as an initial condition. This process prevents spurious
structures to be created after resolution is diminished. Based on the Gaussian scale-
space concept. Florack et at [26] and ter Harr Romeny et al [79] introduced the concept
of scale invariance and formulated the framework for analvsis and syvnthesis of scale-space
differential structures in images. In fact. the Gaussian kernel is a natural representation
of a point in scale-space representation of the physical world.

One fundamental assumption of scale-space analyvsis is causality with respect to res-
olution: no spurious details at the coarser level of resolution should be created as the
scale increases [80]. Babaud et al [4] proved that the Gaussian function is the only kernel
that possesses this property. In fact. the properties of the Gaussian convolution can be

summearized as follows:

1. Causality: the Gaussian convolution is causal in the sense that the numbers of
local extrema as well as zero crossing paths of diffused images are less than or

equal to those of the original image [4. 83].

2. Continuous semi-group structure: the convolution of two Gaussian kernels

results in the Gaussian kernel of the same scale-parameter family.

3. Isotropy, linearity, and shift invariance: the Gaussian smoothing operator is

isotropic. linear. and shift invariant.

4. Simplicity: the Gaussian function is differentiable and its Fourier transform is

simple enabling the direct computation of higher order differential operators.
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Lindenberg [48] derived the scale-space theory for discrete signals where the Gaussian
kernels are replaced by the kernels derived from the modified Bessel functions. The
modified kernels assure that the causality property is not violated as a result of signal
discretization.

Once multiscale information is obtained. schemes for data reduction and extraction
of significant structures from scale-space representation are necessary. The solutions
of multiscale data utilization do not come directly from scale-space theoryv but from
the behavior of image structures in scale-space such as image gradient [5]. maximum
gradient paths [34]. zero crossings of Laplacian images [32. 56]. intensity extrema [47].
and gradient watersheds [28. 29. 67]. In these techniques. exhaustive searches. tracking
schemes that hierarchically links structures of interest at different scales together. either
from coarse scales to fine scales or from fine scales to coarse scales. and techniques for
handling structures of different topologies at different scales are emploved.

To extract image features of different size efficiently. scale parameters of kernels need
to match desired structures. In the ecarly use of multiscale differential masks. without
prior knowledge of scale. selection of scales was done in an ad hoc fashion. Modeling
structures of different sizes as diffused versions of an ideal structure with different degrees
of blur. Lindenberg {50. 51. 52. 53] proposed a methodology for selecting scale parameters
to match local structure sizes by maximizing the normalized measure of local structure
strength. Automatic local scale detection for image structures including grev-level blobs.
corners. and junctions [50. 33]. edges and ridges [51. 52]. distances between ridges [1].
and lines [55] have been proposed. In addition to local scale analysis. other techniques
including blur estimation [20. 84] and estimation of depths from focus [17] and defocus
[v6. 77] are closely related to local scale analysis. In these techniques. degrees of blur
of local details are estimated in terms of Gaussian spread constants. In [17. 76. 77] this
information is further converted into depth information. Besides local scale analysis.
the scheme for global scale detection based on global properties of edges in scale-space
has been proposed by Eua-Anant [22] and Eua-Anant and Udpa [25]. Local minima
of edge-characteristic-scale curves are used as the guidance for global scale detection.

However. the method is not versatile and is sensitive to noise.

2.3 Image Segmentation

[mage segmentation plays a fundamental role in image analysis and computer vision.

Tvpicallv. image analvsis applications emplov image segmentation in the earlv stage
. R le] o - o (=]



to partition the image into constituent parts. Image segmentation can be broadly di-
vided into 3 classes. namely pixel-oriented. region-oriented. and edge-oriented techniques
[31. 37. 40. 74]. Pixel-oriented techniques mainly rely on global measurement profiles
such as pixel intensity histogram while local connectivity information is discarded. Con-
sequently these methods perform poorly in the presence of noise and intensity variations.
Also. these methods usually require prior knowledge of visual attributes of regions to
be segmented. On the other hand. region-oriented techniques such as region growing
and region splitting and merging are dyvnamic algorithms that link local pixels into seg-
mented regions by considering both similarity and connectivity between pixels in local
arcas. Based on statistical and structural approaches. these methods are more robust
in the presence of noise and vield more promising results at the expense of higher com-
putational cffort to perform massive parallel searches in the regions of interest. Besides
pixel-oriented and region-oriented techniques that focus on extracting regions of similar
attributes. edge-oriented techniques emphasize the extraction of edges or boundaries be-
tween regions by exploiting information of discontinuity between the regions. The major
advantage of boundary extraction over region extraction is the reduction in storage and
computational cost. whereas the disadvantage of boundary extraction is the possibility

of getting incomplete boundaries or missing fuzzyv boundaries.

2.3.1 Edge-Oriented Image Segmentation

The first step in most edge-oriented image segmentation techniques is to enhance
edges at desired scales using edge operators while reducing noise by means of filtering.
Generally. in a monochrome image. edges are associated with abrupt changes of intensity
distribution and edge operators are normally emploved to detect the presence of these
transitions. Such changes can be detected in the form of extrema and zero crossings of
image derivatives. Due to the fact that many edges found in real images are approxi-
mation to step edges. the most commonly used edge operators are the first and second

order differential operators.

2.3.1.1 [Edge detection

Based behavior of derivatives of step edges. edge detection by means of thresholding
image gradient magnitude or detecting zero crossings of image Laplacian is simple and
straight forward [31. 40, 46. 62, 74]. In the gradient thresholding methods. pixels having
gradient magnitude above the threshold level are considered as edge pixels while in the

Laplacian-based methods. edge elements represent borders between pairs of pixels where



changes in signs of image Laplacian occur. Nevertheless, since differential operators
functioning as a high pass filter enhance not only edges but also noise. these methods
are sensitive to noise. In addition. since gradient thresholding methods mainly rely
on gradient magnitude. slight variations in gradient magnitude especially at corners and
junctions where the gradient field is weak often vield discontinuities in the results. In the
case of blurred images. direct gradient thresholding without utilizing other information
often produces unacceptable thick edges. For the Laplacian based methods. although the
location of a step edge coincides with the zero crossing of the Laplacian. the converse is
not always true and thus zero crossing detection often yields false boundary indications.
Junctions also present a problem for the Laplacian-based edge detection methods. In
areas where 3 or more regions meet. the assumption that different signs of Laplacian
occupy different regions is invalid and thus detection of zero crossings gives rise to
boundary localization errors.

The next step in edge-oriented image segmentation is to estimate boundaries from
edge information. Among boundary estimation techniques. two approaches have gained
significant popularity. namely template matching and edge linking. In template match-
ing. the estimated boundary is modeled as a deformable curve interacting with the image
dynamically in order to maximize the likelihood between the model and image data. In
contrast to template matching. in edge linking. the boundary is sequentially extracted
along the object edges by mean of a driving force such as counectivity of edge pixels.
Compared to edge-linking techniques. boundary extraction techniques using deformable
contour models vield superior performance: more robust. better boundary localization.
and higher quality of extracted results while edge linking techniques are simpler. faster.

and less sensitive to topologies of image structures.

2.3.1.2 Edge linking techniques

Following edge detection. edge linking techniques are used to assemble the edge
clements into ordered sequences and filter out spurious edges. Early techniques for
edge linking and sequential boundary extraction include heuristic graph searches [3.
63. 64] and dynamic programming [21. 65]. The process begins with an initial edge
clement. sequentially examines neighboring edge elements and gathers next adjacent
edge elements satisfying edge linking conditions to form the boundary. The extracted
boundaries are gradually extended in the direction that minimizes the cost functions
of the boundaries [3. 21. 63. 64. 65]. Since in most techniques. 4 or 8 possible linking

directions are considered for each step, the finest details of extracted boundaries are
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limited by pixels. pixel grids. and pixel diagonals. These techniques do not make use of
multiscale differential masks but employ local operators of small windows.

Direct use of image derivatives for boundary extraction can be found in the gradient
based methods [8. 14. 33. 34, 66] and Laplacian based methods [32. 36. 38. 62]. In
gradient based methods. gradient magnitude is used as indication of edge strength.
Edge pixels having the same gradient direction and large enough gradient magnitude
will be linked together with the current boundary. The boundary is grown approximately
in the direction perpendicular to the gradient direction. In the case of broad edges. a
thinning process is emploved to erode edge curves. Nevertheless. the thinned edge pixels
may he displaced from actual edge locations due to loss of information of edge strength
during thresholding. In contrast to the gradient based methods. there is no need for
edge thinning in the methods based on zero crossing detection. However. since not all
zero crossings of image Laplacian correspond to edges. the methods can result in some
false boundaries.

The algorithm proposed by Murray and O Malley [66] performs edge enhancement.
thresholding of the gradient image. and edge thinning. Instead of thresholding the gradi-
ent image to obtain an edge map directly. alternate techniques for extracting boundaries
utilizing maximum gradient paths have been proposed [9. 14. 34]. In [9]. adaptive thresh-
olding was used to extract low magnitude edge pixels that are connected to high gradient
edge pixels. Goshtasby and Shyu [33] used a minimum spanning tree to group high gra-
dient pixels into boundary support regions. Each maximal path of the tree. equivalent
to the maximum gradient path. was then fitted by a rational Gaussian curve. One im-
portant feature that these techniques lack is the direct exploitation of gradient direction
information. The method utilizing both the gradient magnitude and direction in the
initial step was proposed by Burns et al [8] where line-support regions were established
from groups of adjacent pixels having large gradient magnitudes and similar gradient
directions. Boundaries were extracted from the least square intensity surface fits of line-
support regions. Improvement in noise immunity and boundary localization accuracy
can be seen in the algorithm utilizing multiscale edge information [3. 32. 34. 56. 81].
Other edge linking techniques include fuzzy reasoning [45] and particle model [18]. In
[18]. the algorithm automatically tracks edge contours using Newtonian attractive forces
at edge pixels. However. several parallel contours around an object as a result of particle
motion vield poor edge localization and a fusion process is used to fuse mutliple contours
into a single contour.

Since most edge linking techniques are directly designed to deal with edge elements.
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the finest details of extracted boundaries are limited to the size of an edge clement
which achieves accuracy of at most one pixel. Although some algorithms [33. 38. 58. 78]
can locate edges with subpixel accuracy in theory. boundary extraction with subpixel
accuracy is rarely achieved. Eua-Anant [22] and Eua-Anant and Udpa [24] introduced
the new concept of boundary extraction based on particle motion in a vector field that
vields results with subpixel accuracy. However. the particle model in [22] is not optimized

and suffers from an inertial effect causing shape distortion near object corners.

2.3.1.3 Template matching techniques

The more rigorous approaches for edge-oriented image segmentation have heen im-
plemented using template matching. In template matching. the estimated boundary is
modeled as a deformable curve. The regularity of the estimmated boundaries is controlled
by structures and parameters of the model. Parameters of the model are adjusted to
maximize the likelihood of the model and image data. Cooper [15] and Cooper et al [16]
modeled the sequence of edge elements in a boundary as a Markov process estimated
iteratively using a ripple filter. The boundary is deformed along pixel grids in such a
wayv as to increase the joint likelihood between the hyvpothesized boundary and image
data. Goshtasby and Shyu [33] used the rational Gaussian curve to fit the extracted
high gradient regions. Kass [11] introduced the spline-based active contour models or
snakes. Finding the optimal boundary is equivalent to minimizing the energy function of
the contour including internal forces imposing contour rigidity and elasticity and image
forces attracting the contour to salient features such as edges in the image. Ronfard
[70] and Brzakovic [7] proposed an alternative region-based active contour model in
which image forces depend on local regions partitioned by the contour. To prevent the
contour from being trapped at weak local energy minima. Cohen [11. 12] proposed a
model with an additional inflation force. The normalized image force is also used to
avoid the problem of instability. Gunn and Nixon [35] proposed a dual active contour
model that prevents the contour from getting stuck at local energy minima by balanc-
ing expansion and contraction forces between interlinked contours. Lai and Chin [44]
proposed the global contour model using a regenerative shape matrix combined with a
Markov random field to deal with local deformations. Geiger et al [30] applied dynamic
programming to the active contour model with multiscale boundary extraction capabil-
ity. General concepts. algorithms. applications. and other work on active contours can
be found in [6]. In these models. constraints of smoothness and continuity as well as

boundary topologyv are imposed without prior knowledge of image data which sometimes
\ a3 p p g



Table 2.1

Comparison: template matching versus edge linking.

Template matching

Edge linking

Computational

cost

[nitialization

Flexibility

Accuracy

Noise Immunity

Boundary quality

High. Optimization of a tem-
plate is computationally inten-
sive.

Complex. A template requires
complex initialization proce-
dures.

Low. Template matching fails
when the template topology
does not match the boundary
topology-.

High. An optimization al-
gorithm emploved in template
matching vields accurate re-
sults.

High. Due to optimization.
template matching is more ro-
bust to noise.

High. The constraints of conti-
nuity and smoothness imposed
on the template ensure that the
extracted boundary is always
smooth and connected.

Low. Edge linking requires
a simple search for extracting
connected components of the
boundary.

Simple. The maximum gra-
dient points or zero crossing
points can be used as starting
points of edge linking.

High. Because of the sequential
nature of search. edge linking is
topologically unrestricted.

Low. Edge linking methods do
not exploit subpixel optimiza-
tion techniques resulting in less
accurate boundaries.

Low. Difference operators used
for generating edge maps en-
hance noise.

Low. Edge linking usually re-
sults in broken boundaries.

are not matched to actual image structures.

Besides optimization. initialization is also crucial for template matching. In order to

allow the contour to converge to the image features. the initial contour must be placed

close to the solution. For example. in region-based models [7. 15. 16. 70]. the initial

boundary must overlap or encompass the object. In active contour models, all nodes

must be placed along the path lying near the desired image feature. In [35]. one contour

must be placed inside the object while another must wrap around the object. Lia and

Chin [44] initialized the curve using the generalized Hough transform. Cohen and Ron

[13] initialized the curve by placing endpoints at image features. Due to this constraint.

in many cases. initialization is performed manually. The comparison between template

matching and edge linking techniques is summarized in Table 2.1.
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2.3.2 Boundary Representation

The boundary can be represented in two ways using either an analyvtic descriptor of
the boundary commonly used in template matching or a sequence of boundary points
that are used in edge linking. As dimension, size. and complexity of an image increase.
identifving a suitable number of parameters representing the boundary becomes criti-
cal and cannot be ignored. The efficiency of boundary representation scheme can be
determined by the number of parameters used in the representation compared with re-
construction error. Ideallv. one desires a boundary representation scheme that uses a
small number of parameters while maintaining structural details of the object boundary

In template matching. since the template is selected without any knowledge of the
image feature. the number of parameters is usually fixed and the template can overfit
or underfit the image feature. In other words. the template with the fixed number of
parameters is not guaranteed to be an efficient boundary representation. In addition.
in template matching. locations of boundary points are optimal along normals of the
contour and not alwayvs optimal along the contour. In contrast to template matching.
in edge linking. the number of boundary points varies linearly with the length of the
extracted boundary. However. in general. these points can be collinear and hence redun-
dant. Therefore. this boundary representation scheme is less efficient. After boundary
extraction is completed. the boundary information is used for different high level image
processing applications. Construction of the global image boundary model representing
the overall relation between the objects usually requires additional information of the
application objectives and interpretation of the retrieved boundary information. In most

techniques. the organization of the resultant boundaries is left to users.
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CHAPTER 3. GLOBAL SCALE ANALYSIS

In general. an image consists of objects of several scales. Image analvsis performed at
different scales can result in different interpretation of the same image. As demonstrated
in Figures 3.1 and 3.2. images of the same objects observed at different resolutions reveal
different structures. Images of a tree in Figure 3.1 can represent leaves. branches. and
the whole tree depending on the observation scale. By analyzing objects at the scales
starting from the finest scale to the largest scale. the overall relation between objects and
scales can be perceived. Global scale analvsis is the quantitative evaluation of structural
details with respect to scales. This chapter is primarily devoted to the development of

a mathematical framework for global scale analysis.

3.1 Edge Based Global Scale Analysis

Detection of objects in an image can be done by observing edges since the existence
of edges indicates the existence of structures. In scale-space analysis [32. 52. 56. 83].
detection of dominant structures in a scale-space image is done by observing behavior
of edges in terms of zero crossings of the second order differential structures at various
scales. However. the methods do not provide a quantitative estimate of existing scales.
One way to estimate global changes of edge patterns is to measure statistical parameters
stuch as intensity average. root-mean-square. and variance of normalized multiscale edge
images ¢ (o r. y) as proposed in the previous research [22] where the edge characteristic-

scale curves (ECS) are statistical functions of the normalized edge images:
Mean(o) = E(e(o:x.y)).

RMS(a) = E(c*(o:r.y)).
SD(o) \‘/E(e'-’(a': r,y)) — E(e(o:r.y))%

The main idea underlying the use of statistical parameters of multiscale edge images at
optimum scale o° is that sharpest edges are reflected by the minimum value of statistical

measures at ¢, If the original image contains multiscale structures. embedded scales



(e)

Figure 3.1 A tree observed at different resolutions: (a) original image. (b)
to (f) smoothed images obtained using the Gaussian smoothing
functions with o = 1.2.1.8. and 16 pixels. respectively.
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Figure 3.2

(h)

Cluster-like objects observed at different resolutions: (a) original
image. (b) to (i) smoothed images obtained using the Gaussian
smoothing functions with o = 1.2, 4.8, 16.32.64. and 128 pixels.
respectively.
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are expected to be correlated with local minima of the ECS curves. However. the ECS
curves are seen to be sensitive to noise and are not always successful in detecting all the
scales. accurately.

In contrast to spatial domain analysis. detection of dominant scales could be effec-
tively obtained by analvzing the signal in frequency domain. The following sections
describe the frequency domain approach for global scale analysis. Some aspects of mul-

tiscale representation followed by scale-frequency analyvsis are given next.

3.2 DMultiscale Representation and Multiscale Differential

Operators

Generally. in scale-space analyvsis. multiscale low pass filtering is used to separate
information at different scales. The combination of multiscale low pass filters and single
scale differential operators vields multiscale differential operators. In frequency domain.
multiscale differential operators are band pass filters with variable bandwidth and center

frequencies.

3.2.1 Multiscale Differential Operators

Omne-dimensional multiscale differential masks o,(o:t) can be expressed by derivative
of the multiscale. isotropic. linear. low pass filters. namely the multiscale smoothing

functions o(o: t):
d

dt

Using the inverse operation. the multiscale smoothing function o(o:t) can be computed

oo t) = —ofo: t).

from

o(o:t) = /o’,(a: t)dt.

As in wavelet analysis. the smoothing function o(o: t) is the scaled version of the mother

smoothing function o(t):
(0:t) 1 (<
o\g.l) = —0O\—
' nloc) "o

). (3.1)

where #ﬂ is the normalization factor. For discrete signals. the continuous multiscale

smoothing function ¢ and differential operators are replaced by the sampled version of o

and difference operators that approximate an ideal mathematical differential operator.
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3.2.2 Multiscale Representation

Convolving the multiscale smoothing kernels of gradually increasing scales with the
underlying signal results in a series of smoothed signals. This scale-parameter family of

smoothed signals is called a scale-space image.
{plo:t):i=0...... Vand g9 < ... <oy} (3.2)

where a smoothed image p(o: ¢t) is obtained by convolving the signal p(#) with the mul-

tiscale smoothing kernel of scale o:
plo:t) = p(t) = o(o: t).

while the scale parameter o; is expressed in the exponential form as

g, = 0Jg - e

where gy € R™ and a > 0. In frequency domain analvsis. data is represented by the

Fourier transforim:

{Ployj:w):i=0...... V). (3.3)

where

Plo:w) = P(x) - P(o: ).

Analysis of multiscale representation requires the operators that are causal. linear.
and invariant with respect to scale. The choice of scale invariant normalization schemes
depends upon type of information to be investigated. In Fourier analysis. frequency
components of the signal can be used for describing global patterns embedded in the
signal. Therefore. global scale analysis can be performed effectively in frequency do-
main. In conjunction with multiscale differential operators. analyvsis of global scales in

frequency domain will be discussed next.

3.2.3 Multiscale Structures

In general. objects at smaller scales are parts of objects at larger scales. For exam-
ple. leaves. roots. and branches form a tree. There are several models for multiscale
objects such as fractals and wavelets. A simple model of multiscale objects based on set
theoretical operations is given here.

Let B, be a window at scale n defined as

B = {r:r=1if r € B otherwise = = 0}, (3.4)



19

an object 1, at scale n. 1, can be obtained using

1, = B.n (U=l (3.5)
= Ba N (US(Baoy N(UX(Baoa N ... (UF17))))). (3.6)

where U™V, _, represents a set of objects at scale n — 1 spreading over the entire spatial
domain. In other words. the window B, is used to “crop™ U>1;_; to create the objects
1. Equation 3.6 refers to a multiplicative multiscale pattern. This model simplifies
analyvsis of the objects in frequency domain since the multiplicative multiscale repre-
sentation in Equation 3.6 corresponds to the convolution between Fourier transforms
of the envelopes B,, and U™V, _;. An example of a multiplicative multiscale object is
illustrated in Figure 3.3. As seen. Figure 3.3-¢ is created by masking Figure 3.3-a with
Figure 3.3-c. Equivalently. in frequency domain. the spectrum in Figure 3.3-f of the
multiscale signal in Figure 3.3-e is obtained by convolving the spectrum in Figure 3.3-b
with the spectrum in Figure 3.3-d which smears the impulses in Figure 3.3-b to sinc

functions in Figure 3.3-f.

3.3 Scale Detection Based on Moments of Multiscale Power

Spectra

From the model of multiplicative multiscale objects. the relation between spectrum
of multiscale objects and existing scales is expressed by the convolution hetween spectra
of objects of different scales. The spectrum usually contains several frequency lobes

which can be analvzed using moments of multiscale spectra.

3.3.1 New Measure for Scale Analysis

tl

For l-dimensional signal f(¢). the n'! order moment of f(¢#) is defined as
o

mu(f(t)) = /Rt"f(t)dt. (3.7)

where R = (—=>.x). If f(¢) is the mass distribution function along t-axis. the center

of mass of f(t) can be computed from moments by

- omy(f(t))
RG] 5:8)

e f(OdE
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The central moment of order n is then defined as
fn = / (t — D) f(t)dt. (3.10)
R

The second order normalized central moment. namely the normalized variance. is related

to the spread of f(¢) and is given by

2= 2 (3.11)
o

 falt = DEf(t)dt .

= T nd (3.12)

In frequency domain. for a signal f(¢) with Fourier transform F(.). the center fre-

queney T of a power spectrum |F(w)]?. —=x < w < . is given by.

my (| F («)[?)

= m (3.13)
fR.;“"lF(;‘")l~(l;“' (314)

NE
Jr | F(w)]Pd=
For all real signals. the center frequency T is always zero because the power spectrum
of a real signal is always symmetric with respect to the zero frequency. From Equation

3.12. the normalized variance p? of the power spectrum is given by

2 2 (| F(<)]?) a 1=
“(1F ()i 3.15
p~([F(«)f7) o ((F @) [) (3.15)
_ Jrle— )| F () Pdw 316
Jr | F(w)Pdw (3.16)
For a real signal. p? becomes
Y ” 2 F(w)|*dw -
P ()) = e T (3.17)

Je [F ()P
For the discrete signal. integrations in Equation 3.17 are replaced by the summations:

. wi | F )l .
S I FGIE (3.18)

where &, € [—7.7]. Applying Equation 3.17 to the scale-frequency representation

PIF(w)) =

P(o:x). p? is a function of o:

p‘.’(lpl‘.’;o,) _ H‘.’(IP(UZL&«'):;}) (3.19)

~ no(|P(o:w) )



Consider a signal p(t) with spectrum, P(w) = ¢. The scale-frequency representation

using the multiscale kernel o(o: t) is obtained by

lv

0)
1)

Plo:w) = P(w)- -®P(o:w) (3.:
= c-P(o:w). (3.:

lv

where ®(a7: ) is the spectrum of the kernel o(o: t). Applving Equation 3.19 to Equation

3.21. we get

) 9 17([( U .4.')[2) .
P2y = ! 3.22
R o 322
j2(jB (0 ) ?) .
_ 3.23
1o (1B (a" w)l’) (3.:23)
= p (|<I>|‘: (3.24)

which is equivalent to the normalized variance of the power spectrum ®(o:w) of the
kernel o(o:t).

Defining the power spectrum normalized variance ratio (PSNVR) as
P IPI

3.25
EE (3.25)

PSNVR(P:0) =

where P(a:w) is the spectrum of the multiscale representation p(o:t) of the underlying
signal p(t) and $(o:w) is the spectrum of the multiscale kernel o(a:t). we see that
PSNVR = 1 when P(x) is constant. i.e.. if the signal is composed of just white noise.

PSNVR = L. [n contrast. if P(w) is not constant but has a peak at . we have
2(|1P1: o) < p2 ([P o) if || < p(|®]*: o)

and

| > p(|P)]* o

This implies that PSNV'R # 1 indicates the presence of a scale or feature in the image.
If pi(t) is of interest. we can further define the differential power spectrum normalized

variance ratio (DPSNVR) as

“(IPPra) > p*(1@]*:

DPSNVR(P:0) = PSNVR(P:o) (3.26)

PP o)

P (] 0)

where Py (o:w) is the spectrum of the multiscale differential representation py(o:t) of p(¢)

and ¢, (o:w) is the spectrum of the multiscale differential kernel o,(o:t). Note that the
normalization factor —— in Equation 3.1 does not affect the PSNVR and DPSNVR.
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Consider the case of an ideal multiscale low pass filter o(o: t) with the cutoff frequency

1. Jx] €[0.x]

b(o:w)|)? =
[ )| 0 otherwise.

The normalized variance of |[®(o:w)|? is given by

p(|e(o:w)]”) = W
- 3
_ 1
T 302

")

which is a monotonically decreasing function of 6. Figures 3.4-a and 3.4-b show |[®(o: )|
with w. = 2 and p?(|P(0:w)|?).

Consider the signal p(t) with its power spectrum |P(w)}* given by

Ple)l =
{P(w)] 0 otherwise.

N { 1. jw] € [wy-w2] Uws.wy] where 0 < wy < woy < wy < wy
Applving o(a:t) to p(f) vields a multiscale smoothed signal
plo:t) =p(t) =o(o:t)
with the corresponding power spectrum
|P(a:x)? = |P(&)] - [®(o: ).
The normalized variance of |P(o:w)|? is given by

L. for w, > w,.
: : 3.3
w: -y +5‘".} el

p*(|P(o:w)]?) =

Jwy —wy + w2 —wy)

2. for wy < w. < wy.

PIP(o: ) ) = =

3. for wy < w,. < wy.
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(e) (f)

(a) [P(o:w)]® with w, = 2. (b) p*(|®(0:w)[?). (c) [P(w)* with
wy = lLwy = 2wy = 3. and wy = 4. (d) p*(|P(o:w)]?). (e)
PSNVR(w.), (f) PSNVR(0).
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1. for wy < w,. < ws.

.3 .3
20P(c: 0)[?) = —c 1
p-(|P(o:w)]") 3o = o)

5. for w, < wy.

P (IP(o:)]) = 0.

Figures 3.4-c and 3.4-d show [P(o:x)]? and p*(|P(o:w)]?) with w| = L.w, = 2.3 =
3. and wy = 4. Figures 3.4-e and 3.4-f show the corresponding PSNVR graphs as
functions of & and w, respectively where there exist 2 local minima due to frequency
lobes of |P(w)?. This example shows that local minima of the PSNVR graph indicate
the existence of frequency lobes in the power spectrum of the signal. Moreover. in Figure
3.4-f. local minima of PSNV R(w,) occur at w. = wy and w,. > w; which indicates that
the values of w,. at local minima of the graph PSNVR are ideal for separating frequency
lobes. For the application of multiscale edge detection. the values of o at local minima

of the DPSNVR graph can be used for separating edges of different scales.

3.3.2 Experimental Results: Global Scale Analysis of 1-Dimensional Mul-
tiscale Edge Signals

In this section. several l-dimensional simulated signals are analyvzed using the pro-
posed method and is compared to the edge characteristic-scale (ECS) analvsis introduced
in the previous research [22]. In all examples. the multiscale Gaussian differential kernel
is used:

‘

2y~

t -
oo t) = ———=——¢
la:t) V27a3
with the corresponding Fourier transform:

L
L

b (o:w) = jwe™ T
Figure 3.5 illustrates the example of a multiplicative double scale pattern where the
signal in Figure 3.5-a is the multiplication between square waves of periods 16 and
128. Figure 3.5-b shows the corresponding magnitude spectrum. Figure 3.5-¢ shows the
ECS curves where AV'G. RMS. and SD denote average. root-mean-square and standard
deviation respectively. The graph DPSNVR is shown in Figure 3.5-d. The values of
o obtained from both global scale analysis schemes are displayed in Table 3.1. As
seen in Figure 3.5-b. the corresponding spectrum consists of several frequency lobes due
to harmonic terms and signal aliasing. Most of the graphs contain two distinct local

minima reflecting two existing scales while the SD(o) curve has additional spurious
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magnitude. (¢) ECS curves. (d) DPSNVR graph.

Table 3.1 Global scale analyvsis of the signal in Figure 3.5.

Scale 1  Scale 2

o at local minima of AV G (o) 0.66 6.85  93.56
a at local minima of RMS(o) 0.64 6.21
o at local minima of SD(o) 0.320.69 5.73  60.52
o at local minima of DPSNV R(o) 1.41 12.41

Double scale signal: (a) original signal. (b) Fourier transform
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Figure 3.6 Smoothed signals of the signal in Figure 3.5-a obtained using
multiscale Gaussian smoothing filters with o selected from local
minima in the DPSN\'R graph: (a) o = 1.41. (b) o = 12.41.

local minima. From Table 3.1. all schemes detect both existing scales. The values
of o obtained from ECS analysis are relatively smaller than those obtained from the
frequency domain approach. Figure 3.6 shows smoothed signals at two scales obtained
using the multiscale Gaussian smoothing kernels with the values of o selected from local
minima of the DPSNVR graph. While the signal in Figure 3.6-a represents the pattern
with fine details. the signal in Figure 3.6-b represents coarse structures.

The next example shown in Figure 3.7 is the multiplicative triple scale signal gen-
crated by the product between square waves of periods 16. 128, and 512. Tables 3.2
shows the valiues of o obtained from both global scale analysis schemes. Similar to
the previous example. the spectrum in Figure 3.7-b consists of several frequency lobes.
Clearly. 3 distinct local minima can be seen in all ECS and DPSNVR curves except
the edge average-scale curve. These 3 peaks are consistent with 3 existing scales of the
signal. The smoothed signals obtained using the multiscale Gaussian smoothing filters
with & selected from the local minima of the DPSNVR graph in Figure 3.7-d are shown
in Figure 3.8.

The next example shown in Figure 3.9 is the degraded version of the signal in Figure
3.7-a corrupted by additive white Gaussian noise .V(0.0.3) (signal to noise ratio —3.70
dB). The values of o obtained from global scale analyvsis schemes are shown in Table
3.3. As seen. ECS analysis method yields several false indications of scales introduced

by noise while no spurious scale is detected using the DPSNVR. This example shows
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Figure 3.7 Triple scale signal: (a) original signal. (b) Fourier transform
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Table 3.2  Global scale analysis of the signal in Figure 3.7.

Scale 1  Scale 2 Scale 3

o at local minima of AV'G(0) 0.66 6.85
o at local minima of R\ S(o) 0.64 6.21 41.54
o at local minima of SD(o) 0.50 5.97 42.37

o at local minima of DPSNV R(o) 1.41 12.66 66.82
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1000

Smoothed signals of the signal in Figure 3.7-a obtained using
multiscale Gaussian smoothing filters with o selected from local
minima in the DPSNVR graph: (a) o = 1.41. (b) 0 = 12.66. (¢)

o = 66.82.
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that the noise has little effect on the DPSNVR. This is because frequency components of
noise spreading uniformly over the entire spectrum is averaged out in the computation of
moments of the spectrum and hence has little effect on the DPSNV'R. For ECS analysis.
normalization factors are based on strength of the strongest edges which depend on
data itself and cannot be predicted. Therefore. ECS analyvsis is less reliable. Figure 3.10
shows smoothed signals obtained using the Gaussian smoothing filters with o obtained
from local minima in the DPSNVR graph in Figure 3.9-d. In summary. global scale

analvsis based on the DPSNVR is a very robust method.

3.4 Extension to Multidimensional Signals

[n order to extend the proposed global scale analvsis method to images. several issues
must be taken into account. First. the operator must be homogeneous and isotropic.
i.e.. translation invariant and directional invariant. In the frequency domain. this re-
quirement is equivalent to rotational invariance. In continuous mathematics. the V-
dimensional multiscale differential mask can be expressed as the convolution of multi-

scale isotropic smoothing kernel o(o: ... ... ry) and directional differential operators

d

dr,

as follows: ;
or(oir.....ry) = T *0(Girp .. ... ryv). e =1...... V. (3.28)
‘

where o, is the multiscale differential mask in ., direction. Examples of continuous 2-
dimensional multiscale differential masks and corresponding multiscale smoothing func-
tions are shown in Table 3.4. In the discrete case. the continuous multiscale smoothing
kernel is replaced by its sampled version and the directional differential operator is re-
placed by the directional difference operator as demonstrated by the examples in Figure
3.11. Figure 3.12 shows examples of multiscale differential masks and the corresponding
multiscale smoothing functions.

[n general. in the NV-dimensional spatial domain. the position is expressed in Carte-
stan coordinate by a vector . = (ur,..... ry). Equivalently. the frequency component is
expressed by the frequency vector & = (u;.....uy) where u; represents the frequency
measured in o,-direction. It can be secen in Table 3.4 that. due to the constraint of
isotropy imposed on the multiscale smoothing function. o can be written as a function
of a single variable r where r = /z? + y2. In general. the N-dimensional multiscale

isotropic smoothing function can be written as o(a:r) with the center at r = 0. where

r= \/:f + ...+ a3 is the spatial radius. Similarly, the Fourier transform of an isotropic
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Figure 3.9 Triple scale signal with noise: (a) degraded version of the sig-
nal in Figure 3.7-a with SNR -3.70 dB. (b) Fourier transform
magnitude. (¢) ECS curves. (d) DPSNVR graph.

Table 3.3 Global scale analysis of the signal in Figure 3.9.

Scale 1

Scale 2

Scale 3

o at local minima of AV G(o)

o at local minima of RMS (o)

o at local minima of SD(o)

g at local minima of DPSNV R(o)

0.40 1.11 1.52

0.341.11 1.49

0.32 1.07 1.46
1.93

3.36 6.09 6.59 11.47
597 6.46 7.27 12.17
5.73 13.98
16.38

16.78
44.97
40.73
69.52
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Smoothed signals of the signal in Figure 3.9-a obtained using
multiscale Gaussian smoothing filters with ¢ obtained from lo-
cal minima in the DPSNVR graph: (a) o = 1.93. (b) 0 = 16.38.
(¢) o = 69.52.
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(a) (b)

Figure 3.11 Example of differential masks (a) in r-direction and (b)
y-direction.

smoothing function o can be expressed as ¢(o: R) with the center frequency at R = 0

where R = \/ ui + ...+ uy refers to the frequency radius. However. the Fourier trans-

form of the multiscale directional differential mask. o, (o:ry.....ry). is given by
O, (oiuy.. ... uy) = Florloir..... ry)} (3.29)
= JjuP(o:ug..... wuy). (3.30)
where O(o:u;.. ... uy) is the Fourier transform of the multiscale smoothing function

o(o:ury.....ry). Due to the factor ju, on the right side of Equation 3.30. &, is not
isotropic. One can create an operator with rotational invariance property as follows.

Consider the power spectrum function [W¥]? given below:

R 2T b N (3.31)
= (4 +...+u3)-|B (3.32)
= R?-|®|. (3.33)

®|? is rotationally invariant. [¥]? is also rotationally invariant and can be expressed

Since
as a function of R. Morcover. the multiplication by R? on the right hand side also results
in another desirable property of |¥|? for global scale analysis. namely localization with
respect to R. Figure 3.13 illustrates examples of 2-dimensional |¥|? generated from the
Gaussian smoothing functions of different scales. As demonstrated by images in Figures
3.13-a and 3.13-c. |¥]? is refered to as the multiscale power spectrum ring (MSPSR) of
order 1. or simply. the ring. Varving the scale o creates the rings of different diameters

resulting in the property of localization with respect to R.



Table 3.4 2-Dimensional multiscale

smoothing functions.

differential masks and

multiscale

o (o:r.y) o,(o:r.y)
Gaussian
. _ I:‘llz " _ ‘.'_‘-u_‘
Tozet TC T Taggrt €

GWINNV

- ? : —’-,——, VJ’"°U" 2n-1

—_ I-€ ' - < ( ~ ) < C’
Moment*?
—2r —2y —(r+ )+ C

Distance®f

2r 2y

) 5o
VL =y* re -y

~VEFF+C

* (' is a constant such that mino(o:r.y) = 0.

P (r.y) € {(x.y): V2T + y? < r} where r is the radius of the mask.



Figure 3.12

x 10

Examples of 2-dimensional multiscale differential masks and
multiscale smoothing functions: (a) the Gaussian differen-
tial masks in r-direction and (b) the Gaussian function with
o = 20. (¢) the GWIM\" mask [22] in z-direction and (d) the
corresponding multiscale smoothing function of the GWIMV
mask with o = 20.
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Figure 3.13 Magnitude images and surface plots of the multiscale Gaussian
power spectrum rings: (a) and (b) ¢ = 1. (¢) and (d) o = 2.

1.57
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3.4.1 Application of Multiscale Power Spectrum Rings to Global Scale Anal-
ysis

The multiscale power spectrum ring possesses several properties including localiza-

tion with respect to scale and frequency radius and rotational invariance. Using the

MSPSR as the kernel. the generalized .V-dimensional global scale analvsis method based

on the DPSNVR is established as follows.

For an NV-dimensional signal f(z.....ry). the generalized moment of order (n;.. ... ny)

is expressed as
Mgy = [ A0 2B [ a)didas - dr s
where R = (—~. >c). Similar to the I-dimensional case. the center of mass (T;..... Ty)

in the V-dimensional space is computed from

Iy =
mo...0
Using (7y..... Ty ) as the reference point. the central moment. y. of order (n,..... ny)
is given by
Moy ... ny — R\'(Il - .T[)"l . (_[2 —_ :L_’-_z)n") .. (-L‘_\’ — f.\-)"-\' . f(.l’l ..... I.\')(Z'.L'[(I.l'-_g .- ‘([.I,"\'.
The normalized central moment. n. of order (n,..... ny) is defined bv
l A
fuy....nv
My...ny =
Ho.....0

In the N-dimensional invariance theory [73]. there are several combinations of nor-
malized central moments that generate moments which are invariant to translation.

rotation. and scale change. One invariant moment is the normalized variance p*:
P~ =1hRo..0 T o200+ .-+ Too.. 2 (3.34)

which can be expanded as

P o= Jrx((xy = T2 + ...+ (@ = ) f(ry. ... Ly)dry---dry
Ja~y flrr.....xN)dey - -drx
Jrxr*f(ri.... ry)dry---dry
oy flor.....xn)dey - -dxy

In fact. p* measures the average square radius with respect to the center of f.
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In the global scale analysis of a 1-dimensional signal, p?(|P|* o) is compared with
2 (|®]%:7) to obtain the PSNVR. Similarly. in .V-dimensional space. the PSNVR is
defined by
- PP(IP(&) - ®(o:3))
PSNVR(P:o) = > - .
o) = eGP
where 2 and @ are the spectra of the signal p(f) and the multiscale kernel o(F) respec-

tively. For global scale analysis of differential signals. ® is replaced by the multiscale

(3.35)

power spectrum ring |¥|* in Equation 3.33 resulting in the DPSNVR:

_ AUPE) PN 3))

DPSNVR(P:0) = (0o 2)) (3.36)

The scale information can be retrieved by observing local minima of the graph of DP-
SNVR vs . Due to rotational invariance. both [®[* and [¥|? have center frequency
vector © = (Uy.....uy) at (0,.... 0). For a real signal f(F). |F(Z)|? also has zero center
frequency. Therefore. p? in Equations 3.35 and 3.36 can be computed from
Jry (i + o+ )| F(uy. .. .. ux)Pduy - - - duy

Jr~ [Fluy. ... ux)?duy---duy )

PUF (.. ... uy)?) = (3.37)

For a discrete case. the integration in Equation 3.37 is approximated by summation.

3.5 Experimental Results of Global Scale Analysis of
2-Dimensional Multiscale Edge Signals

This section presents examples of global scale analyvsis of simulated and real images.
The 2-dimensional multiscale smoothing kernel used in this experiment is the multiscale
Gaussian function defined as:

a2
1 IZ+u”

olo:r.y) = —e” 27| 3.38)
( y) Y (
with the corresponding Fourier transform
,,'-’(u'-"l.Q-,
Plo:u.v)y=€e" " =z . (3.39)

The associated multiscale Gaussian power spectrum ring is given by

[W(o:u.c)]? = (u*+ sz)e‘”z(“z*"z) (3.40)
= R% 7%, (3.41)

where R = Vu? + 2.
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To eliminate the need for computing the Fourier transformation. ¥ is generated
directly from Equation 3.41. The DPSNVR is calculated according to Equation 3.36
and the edge characteristic-scale analysis is performed using the multiscale normalized

gradient magnitude image. é. defined by

. l > 3
é(o:r.y) = ;\/p,(oz r.y)? + pyloc.y)>

where p. and p, are the first order derivatives of the smoothed image p(o:z.y) in r and

y directions and the normalization factor n is given by

n = max \/pr(o: L.y)? + py(or.y).

The edge characteristic-scale functions are computed as follows:

- _ 1 Y P
AV Go) = Vil gy:e(a. r.y).
1 s20 L 1
R.‘[S((I) = ,m Iz;( (O'.J.._I/H-.
SD(c) = |RMS(0)? — AVG(0)Y2.

where N x M/ is the image size. In all experiments. local minima in the curves correspond

to the scale values o.

3.5.1 Simulated Images

The first two examples show two tvpes of multiscale structures. a cluster of objects
displayed in Figure 3.14-a and a snowflake shown in Figure 3.16-a. The cluster object
can be modeled using the multiplicative model proposed in the previous section while
fracral based method is suitable for modeling the snowflake.

The image in Figure 3.14-a has two scales. the small scale of circles and the large
scale of the hexagonal cluster. Table 3.5 shows results using the different global scale
analvsis techniques where two scales are detected. Clearly. there are two local minima in
cach of the ECS and DPSNVR graphs. Edge images with o selected from local minima
of SD(o) and DPSNV R(o) are displaved in Figure 3.15. Since the values of o obtained
from local minima of SD(o) are too small to separate the 2 different scales. some small
details appear in the large scale edge image in Figure 3.13-b. The most accurate edge
images in Figure 3.15 are obtained using the local minima of the DPSN\V'R graph. For
example. as illustrated by Figure 3.13-d. small scale edges are completely removed while

the hexagonal outline is well preserved.
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Figure 3.14 Double scale image: (a) original image. (b) log magnitude of
the Fourier transform. (¢} ECS curves. (d) DPSNVR graph.

Table 3.5 Global scale analysis of the image in Figure 3.14.
Scale 1  Scale 2
o at local minima of AV G(0) 0.62 4.07
o at local minima of RMS(o) 0.34 3.77
o at local minima of SD(o) 0.32 3.77
o at local minima of DPS NV R(o) 0.85 6.27
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The snowflake shown in Figure 3.16-a is a triple scale tree structure. The global
scales detected are summarized in Table 3.6. As seen. only one scale is detected using
AV'G(o) while the rest of the graphs detect all three scales. Edge images with o selected
from local minima of SD{(o) and DPS.NV R(o) are displaved in Figure 3.17. Clearly.
while edge images in Figures 3.17-a to 3.17-c obtained using o from the local minima of
SD(o) are too detailed. results presented in Figures 3.17-d to 3.17-f obtained using the

local minima of the DPSNVR graph represent structures at all 3 scales.

3.5.1.1 Effect of spatial separation of objects

The next three examples in Figures 3.18 through 3.20 show the effect of spatial
distance between objects in global scale analysis. In these examples. all images have
144 small squares of size 4 x 4 pixels while the number of global scales are controlled
by varving the separation between the 4 x 4 pixel squares. For example. with 2 pixel
separation in Figure 3.18-a. the image contains only two scales. that of the small square
and the whole cluster. The third scale is introduced by increasing separation between
the groups of 2 x 2 squares as seen in Figures 3.19-a and 3.20-a respectively. In Figure
3.18. both scales are detected by all the global scale analyvsis techniques as shown in
Table 3.7. In Figure 3.19. the separation distance between the 2 x 2 squares increases
but is not enough to vield the next scale. and hence is not detected by any of the
techniques. As shown in Table 3.8. all ECS methods. AVG(o). RMS(o). and SD(o).
miss the largest scale while the method based on DPS N1 R(o) misses the middle scale.
However. a change in the slope of the DPSNVR graph can be seen around o = 3.6.
In the graph of MD#M—) in Figure 3.19-e. where : is the natural scale parameter.
> = Ina. the additional local maximum point can be scen at ¢ = 3.6. This feature is

due to the appearance of the middle scale. Hence. the presence of weak scales can be
d(DPSNVR(2))

detected using the derivative =

d(DPSNVR(Z))

- IPSNVR(z
o at local minima of d({)r’sd:\ Rz s >0
Tweak = or (342)
. PSNVR(: SNV R(:
o at local maxima of 42% Sd\_‘ Riz) — ADF "d__‘ RGN <

As the the separation distance increases. the middle scale becomes more distinct
as seen in Figure 3.20-a. In this case. all three scales can be detected by the graphs
SD(o) and DPSNV R(o). Corresponding changes in w

in Figures 3.18-c. 3.19-¢, and 3.20-¢ where the middle scale is indicated at the local

can also be observed

extrema at ¢ = 3.62 in Figure 3.19-e. Edge images using o listed in Table 3.9 are shown



(d)

Figure 3.15 Edge images with o obtained from Table 3.3: local minima
of SD(o): (a) o = 0.32. (b) 6 = 3.77: local minima of the
DPSNVR graph: (¢) o = 0.85. (d) 0 = 6.27.
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(o] (o

(¢) (d)

Figure 3.16 Triple scale image: (a) original image. (b) log magnitude of the
Fourier transform. (¢) ECS curves. (d) DPSNVR graph.

Table 3.6 Global scale analysis of the image in Figure 3.16.

Scale 1 Scale 2 Scale3

o at local minima of AV G(o) 0.64
o at local minima of RS (o) 0.32 3.10 7.34
o at local minima of SD(o) 0.32 335392 8.25

o at local minima of DPSNV R(o) 0.88 4.07 11.75
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(d) ()

Figure 3.17 Edge images with o obtained from Table 3.6: local minima
of SD(o): (a) o = 0.32. (b) 0 = 3.35. (¢) ¢ = 8.25: local
minima of the DPSNVR graph: (d) o =0.88. (¢) o = 1.07. (f)

o=11.75.




¥

e
i

[N nE B e

4

Figure 3.18

(a) Original image. (b) log magnitude of the Fourier transform.
d(DPPSNVR(z))

(¢) ECS curves. (d) DPSNVR graph, (e)

dz
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Figure 3.19 (a) Original image. (b) log magnitude of the Fourier transform.
d(DPSNVR(z))

(¢) ECS curves. (d) DPSNVR graph. (¢) v
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o ave |
0.84 - AVG

|-~ RMS |
071 __SD_|

Figure 3.20 (a) Original image, (b) log magnitude of the Fourier transform.

d(DPSNVR(z))

dz

(¢) ECS curves. (d) DPSNVR graph. (e)
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Table 3.7 Global scale analysis of the image in Figure 3.18.

Scalel  Scale 2

o at local minima of AV G(o) 0.32 0.64 2.65
o at local minima of RM S(o) 0.32 2.35
o at local minima of SD(o) 0.32 2.26
o at local minima of DPSNV R(o) 0.32 4.24

Table 3.8 Global scale analysis of the image in Figure 3.19.

Scale I  Scale 2 Scale 3

o at local minima of AV'G (o) 0.67  2.654.24
o at local minima of R/ S(o) 0.32 2.98
o at local minima of SD(o) 0.32 3.10
o at local minima of DPSN1V R(o) 0.32 7.05
T ear Of AL HED 3.62
Table 3.9 Global scale analysis of the image in Figure 3.20.
Scale 1 Scale 2 Scale 3
o at local minima of A1°'G(o) 0.64 7.94
a at local minima of RMS(o) 0.32 6.78
a at local minima of SD(o) 0.32 1.65 1.79  5.58
o at local minima of DPS NV R(o) 0.34 2.65 8.93
T ppeap OF TELZVIED 18.08
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Figure 3.22 (a) Original image. (b) log magnitude of the Fourier transform.

(¢) ECS curves. (d) DPSNV'R graph.

Table 3.10 Global scale analysis of the image in Figure 3.22.

Scale 1 Scale 2 Scale 3
a at local minima of AV G (o) 0.32 0.47 0.53
o at local minima of R/ S(o) 0.32 2.98
o at local minima of SD(o) 0.32 2.98
g at local minima of DPSNV R(o) 0.75 6.52 27.84




(d) (e)

Figure 3.23 Edge images with o obtained from Table 3.11: local minima
of SD(o): (a) o = 0.32. (b) 0 = 2.98: local minima of the
DPSNVR graph: (¢) o = 0.75. (d) 0 = 6.32, (e) 0 = 27.84.
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Figure 3.24 (a) Degraded image of the image in Figure 3.14-a with SNR
= 2. (b) intensity histogram. (c¢) log magnitude of the Fourier
transform. (d) ECS curves. (¢) DPSNVR graph.



Table 3.11 Global scale analyvsis of the image in Figure 3.24.

Scale 1 Scale 2 Scale 3
o at local minima of AVG(o) 0.44 2.54 3.62 7.94
o at local minima of RM S(o) 0.42 2.54
o at local minima of SD(a) 0.40 1.12 1.47 2.18
o at local minima of DPSNV R(o) 1.72 T.34 27.84

(d) (e)

Figure 3.25 Edge images with o obtained from Table 3.11: local minima
of SD(o): (a) o = 1.47. (b) ¢ = 2.18; local minima of the
DPSNVR graph: (f) 0 = 1.72. (g) 0 = 7.34. (h) 0 = 2784
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in Figure 3.21. As in Figure 3.14. edge images in Figures 3.21-d to 3.21-f with o obtained

using local minima of the DPSNVR graph are the most accurate.

3.5.1.2 Effect of Noise on Global Scale Analysis

The next three examples in Figures 3.22. 3.24. and 3.26 demonstrate the effect of

noise on the global scale analysis. In these examples. signal to noise ratio is defined as

SNR = Lob) = Togna nd
O noise

where [, and Iygnq are object and background intensities and 0,44 is the standard
deviation of noise. The image in Figure 3.24-a is the noisy version of the image in
Figure 3.22-a degraded by additive white Gaussian noise with SVR = 2.0. The uni-
modal histogram of the degraded image shown in Figure 3.24-b illustrates that object
and background pixels are heavily corrupted by noise and cannot be separated using
histogram analysis. Tables 3.10 and 3.11 report the scales detected by the 4 methods.
DPSNV R(o) detects all three scales in Figure 3.22 while the ECS methods miss the
second and third scales. Edge images obtained using o at local minima of SD(o) and
DPSNV R(o) are shown in Figure 3.23. Clearly. edge images in Figures 3.23-c to 3.23-¢
are best at presenting structures at 3 scales. Table 3.11 reports scales detected in the
noisy image in Figure 3.24-a. In this case. the ECS methods still miss the largest scale
while there are several false indications of smaller scales. Remarkably. in this example.
the most accurate results are obtained using the DPSNVR graph where all scales are
detected without any false indication. This is due to the fact that frequency components
of noise distributed over the entire spectrum have little effect on the computation of the
second order normalized central moment of the spectrum of the image. This example
indicates the superior performance of the DPSNV'R based global scale analvsis.

In the case of very low signal to noise ratios. the method based on DPSNVR still per-
forms consistently as demonstrated in Figure 3.26 where DPSNVR curves corresponding
to all degraded images with various signal to noise ratios reveal similar patterns. In all
examples in Figure 3.26. 3 existing scales are detected even though objects in images can
barely be seen. The results of global scale analysis at various signal to noise ratios are
summarized in Table 3.12. Note that. as signal to noise ratio decreases, false indications

of global scales are produced.



Table 3.12 ¢ at local minima of DPSNVR curves in Figures 3.22. 3.24. and

3.26.
Scale 1 Scale 2 Scale 3
Figure 3.22-d (SNR = x) 0.75 6.52 27.84
Figure 3.24-¢ (SNR = 2) .72 734 27.84
Figure 3.26-b (SNR = 1) 2.01 7.94 30.11
Figure 3.26-d (SNR = 0.3) 0.42 2.18 8.25 38.10
Figure 3.26-f (SNR = 0.23) 0.36 2.18 8.25 21.16 42.86

3.5.2 Results of Implementation on Natural Images

The images of living things such as trees and cells are good examples of natural
multiscale structures. The first example is an image of a tree with 3 distinct scales as
shown in Figure 3.27-a. Results obtained using the 4 methods are summarized in Table
3.13. It is seen that only DPSNVR based method detects all three scales. Edge images
with o obtained from local minima of SD(o) and DPSNV R(o) are shown in Figure
3.28. As demonstrated by Figures 3.28-c¢ to 3.28-c. edge images with o obtained from
DPSNV R(o) clearly represent structures at 3 scales. The next example in Figure 3.29-
a is an image of bone marrow cells. Unlike previous examples. the number of scales in
this image is not easily to discern. Table 3.14 displayvs the corresponding results. Edge
images with o obtained from local minima of SD(o) and DPS NV R(o) are displaved
in Figure 3.30. As seen in Table 3.14. all methods detect Scales 1 and 2. However. only
the edge image in Figure 3.30-¢ with o = 2.09 obtained from the local minimum point
of DPSNV R(a) clearly exhibits boundaries of the white cells.

The next example shown in Figure 3.31-a is the image of a printed page where the
scales range from characters and lines to paragraphs and columns. In terms of separation
distances. the number of scales in this example is not obvious. However, from the results
displayed in Table 3.15. scales of characters. paragraphs. and columns are detected using
the DPSNVR and d([)[)s(‘l_;”“:” graphs. Edge images at detected scales are shown in
Figure 3.32. The last example shown in Figure 3.33-a is the CT scan of a cylindrical
soil sample where grey areas represent soil porosity. Table 3.16 shows results of global
scale analvsis where 3 scales are detected from the DPSNVR and QL’LSJ\:‘—ﬁﬂ graphs.
Clearly. structures at different scales including details of soil porosity are reflected by

edge images in Figure 3.34.
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Figure 3.27 (a) Original image. (b) log magnitude of the Fourier transform.

(¢) ECS curves. (d) DPSNV'R graph.

Table 3.13 Global scale analysis of the image in Figure 3.27.

Scale 1 Scale 2 Scale 3
o at local minima of AV'G(0) 0.62 0.82
a at local minima of RMS(o) 0.33 0.57 0.95
o at local minima of SD(o) 0.32 0.53 1.03 10.44
o at local minima of DPSNV R(o) 0.42 2.45 14.86




(d)

Figure 3.28

Edge images with o obtained from Table 3.13: local minima
of SD(g): (a) o = 0.33. (b) ¢ = 1.03. (¢) 0 = 10.44: local
minima of the DPSNVR graph: (f) o = 0.42. (g) 0 = 2.45. (h)
o = 14.86.
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Figure 3.29 (a) Original image. (b) log magnitude of the Fourier transform.
(¢) ECS curves. (d) DPSNVR graph.

Table 3.14 Global scale analysis of the image in Figure 3.29.

- Scale 1 Scale 2 Scale 3
at local minima of AV G(o) 0.33 8.25 18.81

o4

o at local minima of RM S(o) 0.32 7.94 26.77
o at local minima of SD(o) 0.32 7.63 14.86  28.95
o at local minima of DPSNV R(o)  0.64 2.09 22.00




(d)
Figure 3.30

60

Edge images with o obtained from Table 3.14: local minima
of SD(g): (a) o0 = 0.32. (b) 0 = 7.63. (¢) o = 14.86: local
minima of the DPSNV'R graph: (d) ¢ = 0.64. (e) o = 2.09. (f)
o= 220.
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Table 3.15 Global scale analysis of the image in Figure 3.31.

Scale 1 Scale 2 Scale 3 Scale 4

o at local minima of AV'G(o) 0.32 1.93

o at local minima of RM S(o) 0.32 1.86 1.96

o at local minima of SD(o) 0.32 1.86 5.58

o at local minima of DPSNVR(o) 040 8.93

O rpear OF ARLS2VRED 1.07 15.46

(a)

(d)

Figure 3.32  Edge images with ¢ obtained from Table 3.14: local minima of
SD(o): (a) 0 =0.32. (b) 0 = 1.86. (¢) 0 = 5.58; local minima
of the DPSNVR graph and ocqx of QQP—S%‘R—@-) (d) o = 0.40,
(¢) o =4.07. (f) o = 8.93.
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Figure 3.33  CT scan of a soil sample: (a) original image. (b) log magnitude
of the Fourier transform. (¢) ECS curves. (d) DPSNV'R graph,
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(¢) '_T(ﬁ.
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Table 3.16 Global scale analysis of the image in Figure 3.33.

Scale 1 Scale 2 Scale 3

o at local minima of AV G (o) 0.32 6.78
o at local minima of RMS(o) 0.32 T.34
o at local minima of SD(o) 0.32 7.63

o at local minima of DPSNV R(g)  0.44 1.77
[ dDPSNVR(:)) 13.74
= X

Oweak O

(c) (d) (e)

Figure 3.34 Edge images with o obtained from Table 3.16: local minima
of SD(o): (a) o = 0.32. (b) 0 = 7.63; local minima of the

DPSNV'R graph and o ear of ﬂlgl’_sdw (¢) o = 0.44. (d)
o=4.77. (e) o = 13.74.
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3.6 Conclusions

In this chapter. the problem of global scales is addressed. The global scale is defined
as the resolution at which objects tend to exhibit some distinct observable character-
istics. Based on the concept of scale-frequency representation. a frequency domain ap-
proach for global scale analysis is proposed. The method relies on the assumption that
the spectrum of a multiscale signal contains several frequency lobes related to global
scales. The differential power spectrum normalized variance ratio (DPSNVR) which is
the ratio between the second order normalized central moments of the power spectra
of the multiscale signal representation and the multiscale differential mask is used as a
measure of global scales. The local minimum point in the DPSNVR graph is used as a
global scale indication. Since the computation of moments is less sensitive to uniformly
distributed noise. the method performs well even in a low signal to noise ratio situation.
In the situation when the separation distance between objects is too small to create the
distinct global scale. the weak scale can be detected by observing the derivative of the
DPSNV'R graph with respect to the natural scale parameter. In comparison. the edge
characteristic-scale analvsis performs poorly in several cases while the DPSNVR based

technique performs extremely well in all cases.



66

CHAPTER 4. LOCAL SCALE ANALYSIS OF EDGES AND
MULTISCALE DATA FUSION

In the previous chapter. a study of the global behavior of object edges established a
framework for scale analysis. The formulation was carried out in the frequency domain.
Global statistics of edges at different scales were used for scale detection while informa-
tion at cach detected scale was rendered separately. As the analvsis focuses on smaller
details. local information becomes more important but local behavior of each object may
not be reflected in the global statistics. Local scale analvsis presented in this chapter is

specially designed for estimating suitable scale parameters to deal with local structures.

4.1 1-Dimensional Local Scale Analysis

Let L?*(R) denote the space of square-integrable functions such that for f € L*(R).
I | g

/ f)dt < x<. (4.1)
R
For all f.g € L*(R). the inner product between f and g on L*(R) is defined as
(f.9) = [ F(g(tret (4:2)
while the L2 norm || f|] is defined as
ILfll = (f. )z (4.3)
= ([ f@rant. (44)
R
From Cauchy-Schwarz inequality.,
I[Kf- o < 11 f gl (4.5)
it can be casily seen that
max |( f 9 =1 (4.6)

71 lgll
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which occurs when f = ¢ - ¢g. where c.c # 0. is a constant coefficient. Let ¢(o:t) be a
multiscale normalized template described as

o).

0(0' t) =

Il( )|

where o(t) is a symmetric mother smoothing function used to derive o. From (4.6).
max I(f(t). o(o: 1)) (4.7)
occeurs when ci(rr: t) matches f(t). Hence
Omar = arg mélxl(f(t).é(a:f))l (4.8)

can be used to reveal scale information of f. Sizing by this method is analogous to
measuring an unknown diameter of a hole by inserting gauges of known sizes into the
hole and finding the one that fits.

An example in Figure 4.1 demonstrates the application to size l-dimensional rectan-
gular pulses based on Equation 4.8. The multiscale normalized Gaussian function used

in this example is given by

1 2
glot) = ——=c" 27, (4.9)
a/w

where [I§]] is always 1. Figure 4.1-a shows the Gaussian functions ¢ with different values

of o. The inner product between a rectangular pulse p(117: ¢):

1. for |t < TV,

0. otherwise.

p(Il:t) =

and g is given by

(p(M:t).g(o: t)) = / \/_"'a dt
= /207

where

erf(r \/_ /

The graph (p(10:¢). g(o:t)) as a function of o with the peak at 0,,,, = 7.17 is shown in

Figure 4.1-b. The relation between W™ and o,,,; is found to be

Omar = 0.7171V"
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Figure 4.1 (a) Multiscale normalized Gaussian functions ¢(o:¢). (b)
(p(10:t). g(o: t)) as a function of o, and (c¢) graph between 117
and 0,4, -

as illustrated by the graph in Figure 4.1-c.

Consider a scale-space image f(o.t) obtained from

flo.t) = f(t)=o(o:t) (4.10)
[ f(7)olost = 7)dr. (4.11)

Since ot) = o(—t). f(o.t) can be written as

flo.t) = /Rf(r)(;(a;r—z)dr (4.12)
(f(7).0(0: 7 — t)). (4.13)
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According to Cauchy-Schwarz inequality. local maxima of | f(o. t)| occur when locations
and sizes of o match those of local structures of f. Therefore. complete information
of sizes. locations. and strengths of local structures of f can be obtained from local
maxima of |f(o.t)|. Equation 4.13 is called the local scale analysis of f with respect
to o(a:t). An example shown in Figure 4.2-a is a signal r(¢) with 2 rectangular pulses
with 1" = 10 and 20 centered at ¢t = 110 and 240 respectively. In Figure 1.2-b. y(¢) is
a degraded version of r(t) corrupted by additive white Gaussian noise .V(0.0.23). The
discrete convolution is used to compute the scale-space image |y(o.t)|. Figures 4.2-¢
and 1.2-d show [y(a.t)| and its contour plot where there are 2 distinct peaks at (t.o) =
(110.7.244) and (240.13.66) corresponding to 2 rectangular pulses while spurious peaks

due to noise can be seen in the lower part of the pictures.
4.1.1 Multiscale Differential Operators
Consider a multiscale first order derivative given by
p(o.t) = pt) = o(o:t) (4.14)
= /Rp(r)%é(a:t — 7)d7 (4.13)

where o(a:#) is a normalized multiscale sinoothing function. Using associative property

of convolution. Equation 4.14 can be rearranged as

plot) = /R(%p(f)),:,.é((f:t—r)(lr (4.16)
- /[),(7)(5(0':[-7‘)([7 (4.17)
R
= /[),(T)é(azr—f)(lr (4.18)
R -
= (m(7).0(0:7 = t)). (4.19)

Consequently. the multiscale first order differential operation is equivalent to local scale
analysis of py(¢) using the integration of the multiscale differential mask. [ oo t)dt. as a
template. The local maxima of |p, (0. t)| reveal scale information of differential structures
of p(t). For a given multiscale first order differential mask o,. the normalization of o,

can be done as

- 1
O = ) Oy
| fg O (o t)dt]]

In a trivial case. a Gaussian diffused step function p(t) is obtained by smoothing a

(o:1). (4.20)

unit step function w(t) with the Gaussian function g(og: t).

p(t) = g(oo:t) = u(t)



Figure 4.2 (a) Original signal x(¢). (b) degraded signal y(¢t). (¢) y(o.t). (d)
contour plot of y(o.t).
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(a) The first order normalized Gaussian differential masks. (b)

Here. oy represents a degree of smoothness of the signal. The first order normalized

Gaussian differential function is given by

R d 1 _*
gi(o:t) = — T
dt |5 /=
-t .
- e Y=
g/

Figure 4.3 shows examples the first order normalized Gaussian differential masks

. Equa-



-1
v

tion 4.14 vields

pelo.t) = f(t)* gi(o:t)
t 1 - d 1 2
= ———e odt) * (———=e" 2%
(/—x V270og ) (dt o )
1 -5 1 e
= (———e 76 ) k (———=e .'T-’)
V27og o/
1 x< - [
= / e *¥he 27 dt
2732000 I -
1 o -
— i “a’

which has the peak at ¢ = 0. By differentiating p,(o.f = 0) with respect to o and setting

1o 7ero.
2 2
oy — 0O
rigl2(g2 + 62)3/2

=0.

We get 0,4y = 0p that maximizes p,(o.t). This example demonstrates the application
of the multiscale Gaussian differential operation for measuring the degree of smoothness
of a signal.

Another example of estimating smoothness of edges is shown in Figure 4.4. In general.
a slope of an edge indicates the degree of smoothness of the edge. Figure 4.4-a is
a signal f with ramp edges of slopes —0.0909 and 0.0244 centered at + = 100 and
300 respectively. Figure 4.4-b is a degraded version of f corrupted by additive white
Gaussian noise N(0.0.01). The corresponding scale-space image and contour plot of
ipe(o:t)| computed using Equation 4.14 with o, = ¢,(o: t) are shown in Figures 4.4-¢ and
4.4-d respectively. We sce that there are 2 dominant peaks at (f.0) = (101.4.801) and
(300.14.97) corresponding to the two edges where the values of o at the local minima
are related to slopes of the ramp edges.

For higher order multiscale differential operators. normalization factors are needed
to be chosen carefully depending upon the integration orders. In general. the n-order

multiscale differential mask can be written as

O (o:t) = - o(a:t). (4.23)

The normalization factor is given by the m!'*-order integration norm:

n(ag) = || ---/o’,m,(azt)dt'"“ (4.24)
d

n—rn

= || o(o:t)||. where 1 < m < n. (4.25)

(ltn —rm
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Figure 4.4 (a) Original signal. (b) degraded signal p(t). (¢) |p:(o:1)]. (d)

contour plot of {p(o:t)|.

The choice of the integration order m depends on the shape of structures to be matched
but in general m = 1 works in most cases.

4.2 Extension to N-Dimensional Spaces

To extend the proposed local scale analysis scheme to .V-dimensional signals. several
issues must be taken into account. The origin and a set of .V linearly independent or-
thonormal basis vectors are adequate to express an NV-dimensional coordinate system.
In general. the geometrical information representation must be independent of the coor-
dinate system. For example, differential structures [26. 79] are invariant under Cartesian

coordinate transformations: rotation and translation. In this section. local scale analysis



of differential structures is investigated.

4.2.1 Differential Structures

In order to express differential invariants of orthogonal -transformations in simple
forms. it is natural to introduce the local orthonormal coordinate system in which direc-
tions of axes depend on local information. Based on the gradient direction. the gauge
coordinate (v.w) [26] is introduced such that r-axis and w-axis are. respectively. orthog-

onal and parallel to the local gradient vector.

i N 2 N (4.26)
w L2+r2\ L, L, Yy
_ sin 6 —-('059 .r (4.27)
cosf) sinf Yy
(4.28)
i Ly

where L, and L, represent image derivatives in r and y directions and § = tan™' ;*.
.r

Partial derivative operators in ¢ and w directions can be computed by

v _ [ sin 6 —cosf J, - (4.29)
O cosf sind d,

Since the gradient direction is invariant with respect to choice of coordinate system.
all polynomial expressions in (. w) are invariant under orthogonal transformations. In
general. the gauge coordinate system in Equation 4.28 is valid only in the areas of none
zero gradient but such a condition is adequate for numerical analysis of images. Table 4.1
shows examples of differential geometries which are invariant under Cartesian coordinate
transformations of a 2-dimensional image expressed in Cartesian and gauge coordinates

along with the corresponding geometrical meanings. In scale-space analysis. differential

geometries are related to differential structures.

4.2.2 Scale Invariant Multiscale Differential Operators

The fundamental components of differential structures are partial derivatives of the
image. Based on the concept of scale-space analyvsis. multiscale partial derivative op-
erators must be invariant to scales. In the l-dimensional case. the integration norm
was used as the normalization factor for the multiscale differential mask. However. in a
multidimensional space. the choice of suitable integration direction is difficult. Normal-

ization of the mask by the integration norm must be selected according to the integration



Table 4.1 Examples of 2-dimensional differential structures invariant under
Cartesian coordinate transformations.

Cartesian Gauge Geometrical meaning
L L Intensity image
L+ L; L [VL|?
L.,+L,, L. + L, Laplacian V2L
=L Lw(,‘,__'[:,[::)[};f—l‘"lu —[[—- [sophote curvature
L‘L””“’y(zgi"[‘);)f,‘;”([‘iH‘;,) ~Len Flowline curvature
Glestbloctbe L w(vL). Sk

path. In this research. we propose the scale invariant normalization scheme for the 2-

dimensional multiscale differential masks using the directional integration norm of the
masks as follows:
For a function f(r.y). the (p.g)-order integration norm in .r-direction is defined as

Negaf) = [ Fleg)damdytydr)tdy. (4.30)

Similarly. the (p. ¢)-order integration norm in y-direction is defined as

Nypa(f) = /(/ _/R«p*,,,f( - y)drPdy?) dy): rdr. (4.31)

The normalization factors for O n,m(o:x.y) are selected from the directional integra-
tion norms Nrpq)(0znym) and Nypq)(0,n,m) depending on the order and direction of
integration. In this research. the normalization factors are limited to the first order

directional integration norms:
Nrgoy(opmym(oir.y)) = /R(/ (/ Opnym (07 L. y)(lr)z(l.z')%dy. n > 1. (4.32)
R /R

and

Ny (Opnym (o2 y)) = /R(/R(/Roznym(a:r,y)dy)"’d!/)%dr. m 2 1. (4.33)
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In the discrete case. N g) and Vy( o) are given by
. 1
Nro)(0pym(o: L. y)) Z( ZI——ZOI,. m{o:r.y)?)z (4.34)

and

Ny0.1)(0znym (a2 L. y)) Z 7 ZI ZO:" m (o 2. y) )3, (4.35)

where N x M is the mask size. The choice of directional normalization factors depends
on the order of partial derivations that generate the mask o m(o:r. y). For instance.
the normalization factor of Orzc(a:r.y) is N g)(0rrr) while the normalization factor
of oyyulair.y) is Ny, (0yyy)- On the other hand. for o,,,(o:.r. y). there are 3 possible

partial derivation orders
- - a - a .
Orry(O:r.y) = aTon(o:r. y) or 3r =0y (o1, y) or ayon(azi.y).

Hence. Ny gy(0rry) is used for the first two cases while N y.1)(0,ry) is used for the last
case.
In general. the number of partial derivative orders to generate Ornym from Op-1,m is

(n—m—1)!
(n—1)4n!

{(n~m-1)!
n'{m-1)"

and Oy m-: is

while the number of partial derivative orders to generate Opnym from oy m-1 is

The total number of partial derivative orders to generate opaym from Opn-1,m

(n—-rn)!
nlrn!

As a result. the average normalization factor n used in the

computation of differential structures for o -, is given by

1 nlm! ((n +m —1)! 1 C(n+m—1)! i )

= _ + _
(n=1)!m! Nxgo(ormm) n'(m — 1)1 Nyo.a)(0rmnym)

(4.36)

n (e +m)!

For example. the 2-dimensional multiscale Gaussian function and its first order partial

derivatives are given by

olo:xr.y) = 2702(1_"?«7?‘. (4.37)
o(o:r.y) = —.);;ﬂe_;:‘o:f_- (4.38)

aned o
0,(0: . y) = ‘>.q(,x°'—l (4.39)

The normalization factor of oy(o:x.y) and o, (o:r, y). are given by

Nyoay(oylo:r.y)) = Nrag(o(o:r.y)) (4.40)
= /(/ I/ o (a:r, y)(l‘r|2(l.r)%(ly (4.41)
R JR /R



= /(/ O(U:I,y)"’dr)%dy (4.42)

= dr) 1dy (1.43)

_ _ (4.44)
207

4.2.3 Local Scale Analysis of Edges in 2-Dimensional Images

Image gradient is a natural descriptor of edges. The strength of edges can be de-
termined from the gradient magnitude while edge locations can be obtained from the
maximum gradient paths. Local scale analvsis of edges determines degrees of smooth-
ness of edges in terms of scale parameters. Lindenberg [52] introduced the differential

geometric definition of edges based on image gradient:

[:L,, +2L,L,Lry+ L[:L,,

Lyw = —= T L._,‘ =0 (4.45)
L3, s +3L;L L ry +3L,L]L,,, + L)L,
Lu-u-u_v = (L_J+ L__): vy <Ll < 0. (4.46)
I yl-

This definition is equivalent to the maximum gradient path. To avoid the direct compu-

tation of high order partial derivatives. definition of edges used in this research is given

by
~ VL
- = =0 147
Low = VL) - 57 (4.47)
and
VL,.-VL <0. (4.48)

In practice. edge localization is done by detecting zero crossing paths where L., changes
its sign and Equation 4.48 is satisfied.

For local scale analysis. it is assumed that edges in different parts of an image have
different degrees of smoothness corresponding to different o. To analyze scales of local
edges. normalized multiscale Gaussian differential operators. o,(o: r. y) and éy(a:f.y)
with normalization factors in Equation 4.44 are emploved. For an image L. local scale

analvsis of edges in L is obtained by collecting the maximum edge map e,,,, along with

Timnar (I Yy ) :

Cmar(£.y) = max|VL(o:r, y)| (4.49)
= max \/Li(a;r. y)+ Li(o:r.y) (4.50)

= max /(L *6:(0:2,9))? + (L * &, (0: x.y))? (4.51)



and

Jlna.t('l:f ’/) =drgm;L‘{|VL(O')I, (452)

Using the definition of edges in 4.47 and 4.48 to localize edges. location information of
edges is obtained.

Examples of local scale analysis of edges are given below. The first example in Fig-
ure 4.5-a shows a simulated image containing a square smoothed by Gaussian masks
of different scales. The lower left. lower right. upper right. and upper left quarters of
the square are smoothed by the multiscale 2-dimensional Gaussian smoothing functions
with ay = 1. 2.4, and 8 respectively. Two local scale analvsis methods with and without
edge localization are tested. The multiscale Gaussian differential masks with the nor-
malization factors computed using the discrete formulae in Equations 4.34 and 4.35 are
used. In the method with edge localization. only edge pixels satisfving conditions in 4.47
and 4.48 are taken into account. The o-map and e,,,, obtained from Equations 4.52 and
1.51 without edge localization are displaved in Figures 4.5-b and 4.5-¢ while those with
edge localization are displaved in Figures 4.5-d and 4.5-¢ respectively. Comparing the
results with and without edge localization. results without edge localization vields false
indication of o in the areas adjacent to the structures. This attributes to the diffusion of
the gradient of the strong structures in the neighborhood. In contrast. in Figures 4.5-d
and 4.5-e. only edge pixels are preserved. Figure 4.5-f shows the values of 7,,,, detected
along the perimeter of the square which closely match the actual values of gy of the
Gaussian smoothing functiens used to smooth the square. The next example in Figure
4.6 shows the application of local scale analysis for blur estimation. Figure 4.6-a contain
in-focus and out-of-focus objects. The o-maps in Figures 4.6-¢ and 4.6-¢ indicate the
small values of o at edges of the in-focus object and the large values of o at edges of
the out-of-focus object. The results using edge localization vields a sharper ¢,,,, image
shown in Figure 4.6-d compared to the e,,,, image in Figure 4.6-b obtained without
edge localization.

Besides sizing the local structures. this procedure can be used for multiscale data
fusion where only values associated with local maxima of the scale-space differential
structure image are collected. In the next section. several multiscale data fusion methods

are investigated.



(e) (F)

Figure 4.5 (a) Original image of a smoothed square. (b) o-map and (c)
emar Without edge localization. (d) o-map and (e) epr with
edge localization, (f) ,..z along the boundary of the square.
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(d)

Figure 4.6 (a) Original image (courtesy of John Kesterson, VayTek, Inc.),
(b) €ner and (¢) o-map without edge localization. (d) e, and
(e) o-map with edge localization.
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4.3 Multiscale Data Fusion and Multiple Scale Differential
Masks

Multiscale data fusion is the method for utilizing data obtained at different scales.
The techniques proposed so far were based on the behavior of image structures such
as local extrema of scale-space gradient magnitude images or zero crossings of scale-
space Laplacian images [5. 28. 29. 32. 34. 47. 56. 67]. Exhaustive searches as well as
tracking schemes that links structures at different scales together using data structures
such as trees and techniques for handling structures of different topologies at different
scales have been emploved. One approach investigated in this research is summation of
multiscale data. Based on the scale invariant normalization scheme proposed previously-.
the details at all scales are treated equally. Summation of data at all scales can therefore
be done directly without any modification.

Let W(o:r.y) be a scale-space differential structure image. Multiscale data fusion
images are obtained as

Z Y(o:r.y) (4.53)

and

f Yo =e":r.y)d=z. a >0. (4.54)

z

for discrete and continuous o respectively. To obtain a multiscale data fusion image
of nonlinear differential structures. computation of ¥ at each scale must be performed
individually. Hence the overall computational cost of a multiscale data fusion image in
4.53 is as same as that required for local scale analysis. On the other hand. for linear
differential structures. summation of multiscale differential structure images is equivalent
to a single convolution between the image and summation of the corresponding multiscale

kernels o (o:r. y):

S W(oir.y) = Y L(z.y)*v(oir.y) (4.53)
= L(r.y)=* Z w(o: L. y). (4.56)

As a result. the computational cost is significantly reduced. The mask ¥, v(o:r.y)
is called the multiple scale mask. Based on this concept. the multiple scale differential

mask is given by

\N N )
AN — (_Drnynl(o'i;l'.!/) -
E Opnym (03 L. Yy) = E — . (4.57)
= iz N (Oznym (o 2. y))
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where N(ozn,m (0,2 x.y)) is the normalization factor of 0paym(0;: x.y) computed using

Equation 4.36. .V, is the total number of scales. and
o =0p-a'. a>1and gy > 0.

Figures 1.7 to 4.9 illustrate examples of multiple scale differential masks. Since the
multiple scale differential masks are the combinations of the normalized multiscale dif-
ferential masks at different scales. differential structures computed contain contribution

from different scales.

4.3.1 Experimental Results of Multiscale Data Fusion

Let ¥ be a multiscale differential structure image. 4 multiscale data fusion algorithms

tested in this section are listed below.

1. Maximization of |¥| with respect to o without feature localization:

U (Omar: - Y)

where
Omar = ATgMax [V (o:r.y)l.

[}V

Maximization of |¥| with respect to o with feature localization:

\P(Urrzaz: T I/l)

where

Omar = Argmax |V (o: £;. 4.)]
and {(.r,. y:)} represent locations of structures.

3. Summation of ¥ with respect to o:

Y ¥(o:z.y)

G

1. Computing ¥ using the multiple scale differential masks:
\IJ(I:!/) = f(L~ sz Lys L.L’J.'? Lry ----- Lr"y"‘)e

where Lo Ly Ly, Lyy..... L;nym are computed using multiple scale differential

masks.
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Figure 4.7 The multiple scale differential mask Z;\;’O o (opi:r.y) with o
arving from 0.5 to 11.88: (a) surface plot. (b) cross section
at y = 0. (¢) intensity image.

A comparison between the different multiscale data fusion algorithms is demonstrated
by examples given next. In all the examples, normalized multiscale Gaussian differential
masks were used to generate multiscale partial derivatives of the images as well as
multiscale differential structure images. Results of multiscale data fusion of gradient

magnitude images and Laplacian images are provided.

4.3.1.1 Multiscale data fusion of gradient magnitude images

Figure 4.10 illustrates the gradient magnitude images |V L(o: r. y)| at several scales.

The original image shown in Figure 4.10-a contains sharp edges to the right of the
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Figure 4.8 The multiple scale differential mask Zi\:o C;n(o’,-;x.y) with o
varying from 0.5 to 11.88: (a) surface plot. (b) cross section
at y = 0. (c) intensity image.
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(a)

Figure 4.9 The multiple scale differential mask Z;\:'”O Oyl ix.y) with o
varving from 0.5 to 11.88: (a) surface plot. (b) intensity image.

face and blurred edges at the shadow to the left of the face. The images |V L(o:r.y)]
shown in Figures 4.10-b to 4.10-f are computed using the normalized multiscale Gaussian

differential masks.

- I £ ~us
ofoiry) = ——F=m==—c
3 -
27 o
and
- 'l/ _J':*.u"‘
Oy(”:f-!/) =m0 T2 .

27 of

The 4 multiscale data fusion algorithms for |V L(o:.r.y)| are obtained as follows.

1. Maximization of |V L| with respect to o without edge localization:

max IVL(o:r.y)l.

2. Maximization of |V L| with respect to ¢ with edge localization:

max |V L(o:ri.y:)l.

where (r,. y;) satisfies

LiL;. +2L.L,Lry+ L:L,,

=0
L+ L2
L3L.rr +3L3L,Lery +3L, L L,y + L)L, 0

(L2 + L)z
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(e) (£)

Figure 4.10 (a) Original image L. (b) to (f) gradient magnitude images
|[VL(o:x.y)| with ¢ = 0.5, 1, 2, 4. and 8 respectively.
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3. Summation of the multiscale gradient magnitude images:

Y IV L(o: . y)l

a

4. |VL| computed using the multiple scale differential masks:

VL = \/LZ + L2,

Le=L{xr.y)*3Y b0t r.y)

where

and

Ly =L(xr.y) = Zéy(U:J‘- ).

The overall computational effort required to perform multiscale data fusion of the
first three cases is approximately the same since [VL| at each scale must be computed
individually. In the last case. only 2 convolutions are required between the image and
multiple scale differential masks.

Results obtained from 4 multiscale data fusion algorithms are shown in Figure 4.11.
As seen. max, |V L(o: . y)| with edge localization in Figure 4.11-a provides the sharpest
results while max, [VL(o: x. y)| without edge localization in Figure 4.11-b provides the
most blurred data fusion image. The gradient image in Figure 4.11-d obtained using
the multiple scale differential masks is comparable to that obtained using summation
of the multiscale gradient images as seen in Figure 1.11-c. The quality of the gradient
magnitude images in Figures 4.11-c and 4.11-d are in between those of max, |V L(o: z. y)|
with and without edge localization. In Figures 4.11-c and 4.11-d. the shape preservation
property is demonstrated by fine details at blurred edges of the shadow on the left
shoulder and on the left side of the face. Unlike the first 2 algorithms that totally
discard all weak details. details at all scales are preserved in the summation method and

the method using the multiple scale differential masks.
4.3.1.2 Multiscale data fusion of Laplacian images
The Laplacian image V2L is defined as
V=1L, +L,,

Since the Laplacian operator is linear, summation of multiscale Laplacian images is
cquivalent to computing the Laplacian image using the multiple scale differential masks.

Multiscale data fusion algorithms for Laplacian images are thus given below:



Figure 4.11
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(d)

Multiscale data fusion images of |[VL(o:x.y)| of the image
in Figure 4.10-a with o varving from 0.5 to 7.81: (a) and
(b) max, |VL(o:r,y)| with and without edge localization. (c)
Yo IVL(o:x.y)|. (d) |VL| computed using the multiple scale
differential masks.
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1. Maximization of |V2L|:
ViL(Omaz: L. Y)

where

Ormar = aIg méi-\' IVZL(O'Z . y)l
2. Summation of the multiscale Laplacian images:

S VEL(o:r.y) = L(z.y) * ( 0s(0: 2. y) + Y 0y (0: 1. ).

The computation of ¥, V?L(o: z. y) requires only one convolutions.

Examples of multiscale data fusion of Laplacian images arc demonstrated in Figures
4.12 to 4.20 . The original images in Figures 4.14-a. 4.17-a. and 4.20-a contain edge
details with different degrees of smoothness. The images of V?L(o:r.y) at several
scales are shown in Figures 4.12-b to 4.12-f. 4.15-b to 4.15-¢. and 4.18-b to 4.18-e while
the images of sign(V2L(o: r.y)) are shown in Figures 4.13-b to 4.13-f. 4.16-b to 4.16-e.
and 4.19-b to 4.19-¢ where the white areas represent the positive sign. \While the results
obtained using the small o are prone to noise. those obtained using the large o introduce
more shape distortion. In these cases. the results obtained at a single scale fail to capture
edge details. On the other hand. the results in Figures 4.14-c. 4.14-¢. 4.17-c. 4.17-¢. 4.20-
c. and 4.20-e obtained using the multiscale data fusion methods clearly preserve outlines
of the objects and remove nearby spurious details. These examples show how well details
at different scales are combined to achieve both structure preservation and spurious noise
suppression

In general. in traditional image analysis. diffusion of strong structures to the sur-
rounding areas induced by smoothing process creates undesirable edge effect. However.
the proposed multiscale data fusion algorithms exploit this diffusion phenomenon to
climinate spurious details surrounding the structures. According to these preliminary

results. advantages and disadvantages of the tested multiscale data fusion methods are

summearized in Table 4.2.
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(F)

(a) Original image L. (b) to (f) images of sign(V*L(o:r.y))
with o = 1. 2, 4, 8. and 16 respectively-.



N AT 4

Figure 4.14  Multiscale data fusion images of V2L (0nar: x. y) with o varyving
from 0.5 to 15.77: (a) original image L. (b) V*L(0/nar: 2. y)- (¢)
sign(V2L(0maz: . y))- (d) 4 V2L, (e) sign(T, V2L).
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(d)

Figure 4.15 (a) Original image L. (b) to (e) Laplacian images V2L with o
=1, 2. 4. and 8 respectively.
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Figure 1.16 (a) Original image L. (b) to (e) images of sign(V*L(o:r.y))
with o = 1. 2. 4. and 8 respectively.



(d)

Figure 4.17 Multiscale data fusion images of V?L(0 4. T. y) with o varying
from 0.5 to 8.1: (a) original image L. (b) V2L(ou::r.y). (€)
sign(V2L(0mar: 2. y)). (d) , V2L, (e) sign(32, V2L).
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Figure 4.18 (a) Original image L (courtesy of John Kesterson. VayTek.
Inc.). (b) to (e) Laplacian images V2L with 0 = 1. 2. 4. and 8
respectively.



Figurc 4.19 (a) Original image L. (b) to (e) images of sign(V?L(o:x.y))
with ¢ = 1, 2. 4, and 8 respectively.



98

Figure 4.20 Mlultiscale data fusion images of V?L(Oma,: T.y) with o varying
from 0.5 to 8.1: (a) original image L. (b) V?L(0ar:x. y)- (¢)
Sign(VzL((;ma:: £ l/))~ (d) ny V'.ZL. ((‘) Sig[l(za V‘)L)
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Table 4.2 Summary of multiscale data fusion algorithms.

Complexity Computational cost Scale analysis
W(Tar: L{x. y)) without Low High Yes
feature localization

V(T mar: L(xr.y)) with High High Yes
feature localization

SoWW(a: L(r.y)) Low High No
W(L(r.y)) obtained Low Low No

using multiple scale
differential masks

4.4 Conclusions

The local scale analysis method proposed in this chapter is based on multiscale
feature matching. The multiscale differential operations are considered as matching
between image derivatives and integrations of the masks. The integration norms are
used as normalization factors of the multiscale differential masks. Information of scales.
locations. and strength of structures are obtained from local maxima of the multiscale
differential structure images. In the second part. 4 multiscale data fusion algorithms
are proposed where details obtained at all scales are treated equally by using a scale
invariant normalization scheme. The most striking features of the method using multiple
scale differential masks are the low computational cost needed for the algorithm and the
shape preservation property. The method requires only few convolutions to compute the
differential structure images in contrast to other methods that compute details at cach
scale. In addition. the results obtained using multiple scale differential masks preserve
all strong details at all scales of interest with little shape distortion. The use of multiple
scale differential masks also increases scale selection tolerance since the computation of

the mask is performed using a range of scales instead of a single scale value.
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CHAPTER 5. BOUNDARY EXTRACTION ALGORITHM

The previous chapters deal with the selection of suitable multiscale differential masks
and scale parameters to generate feature images. especially. the differential structures of
an image. The next step in image analvsis is to extract the information into organized
structures using a boundary extraction algorithm that provides complete information of

object boundaries essential for image analyvsis.

5.1 Background

[n the previous work [22]. a boundary extraction algorithm was developed based on
a particle model in two orthogonal velocity fields. In general. a particle P in a system

can be described by the 4-tuple
P=(p.m.r. F).

where g, m.and ¢ are position. mass. and velocity of a particle and F is a force acting on
the particle as shown in Figure 5.1. When F and m are neglected. the particle position

in a first order system is given by

pit) = p(0) + ct. (5.1)
where p(0) is an initial position. In a discrete case, Equation 5.1 is replaced by

Pr+1 = Pr + MMk, (5.2)

where At is the time step and pi and & denote the particle position and velocity at the
K time step. Equation 5.2 is well suited for boundary extraction where the velocity
field is derived from the image. Generally. © depends on position and time. In this
rescarch. however. since all fields derived from an image are static. © is a function of
position alone. On the right hand side of Equation 5.2. &} at position pi is needed to be
observable. Therefore. for discrete velocity fields derived from an image. a polynomial

surface approximation technique is employved for obtaining the field values at arbitrary
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Figure 5.1 Particle P in a force field F.

positions. Surface approximation techniques used in this research are described in Ap-

pendix A.

5.1.1 A Model of Particle Motion in a Combined Orthogonal Velocity Field

Consider the differential representation of a curve by two sets of vectors tangential
and normal to the curve. In general. a curve can be uniquely represented using two
differential components directed tangential and normal to the curve [54]. In discrete

representation. a curve can be expressed by the recursive equation
[7k+l = [7k + by + Il (5.3)

as shown in Figure 5.2 where p; is the kth point of the curve. £ and 7i; are unit vectors
tangential and normal to the curve at pi respectively while ap and 3¢ are constant
coefficients. Based on Equation 5.3, two sets of vectors tangential and normal to the
boundary are required for boundary representation.
By combining Equations 5.2 and 5.3. the particle model proposed in the previous
work is given by
Drel = Px + a€y + 3ii. (5.4)
where o and .3 are tangential and normal stepping factors respectively and € and 77 are
the edge vector field and the normal compressive velocity field tangential and normal
to object boundaries respectively. The edge vector field € is defined as the normalized

Hamiltonian gradient vector field:

ot
(S]]}
~—

€ = %(L,,Z-LJ) €
(VL)*, (

ot
2

I



Figure 5.2 Discrete representation of a curve by a set of tangent and normal
VveCtors.

where ()~ denotes the 90-degree rotation transformation. ¢ = max|VL|. and 7 and J
arc unit vectors in r and y directions respectively. An example of the edge vector field
obtained using the Gaussian differential masks with ¢ = 1 is shown in Figure 5.3-a
where edge vectors tangential to the object boundaries form the edge currents™ flowing
around the object.

For the normal compressive velocity field 7. 2 vector fields. namely the normalized
gradient of the gradient magnitude image and the normalized Laplacian-gradient vec-
tor fields. were used in the previous work. The normalized gradient of the gradient

magnitude image is computed as

1 1 L
~V(VL) = -V(/Li+L})

1 -~ -

= _———_( LIL.E.L' + Lan L+ (L:Ln +L,L, J

(\/—Li+—L!'§ ( y J) y y J!I) )

while the normalized Laplacian-gradient vector field is defined as
! ., 1 S
EVL -V°L = ;(L” + Ly )(Lei+ Lyy)

where ¢ is the normalization factor. ¢ = max|V(|VL[)| in the former case and ¢ =
|max VL - V2L| in the latter case. Figures 5.3-¢ and 5.3-e show examples of 1V|VL]|
and V2L . VL respectively computed using the Gaussian differential masks with o = 1.
In the case of V|VL|. since |VL| has its maximum gradient path along the object
boundary. $V[VL| points toward the nearest object boundaries. Similarly. V2L has
opposite signs in the areas inside and outside the object. As a result. %V;’L - VL points
towards the nearest object boundaries. This is clearly demonstrated in both Figures

5.3-¢ and 5.3-¢.
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(a)
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(f)

Figure 5.3 Particle trajectories based on Equation 5.4: (a) edge vector field.

(e)

(b) trajectory with a = 0.1 and 3 = 0. (¢) :V|VL|. (d) trajec-

VL - VL.

1
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(f) trajectory with a = 0.1.
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In Equation 5.4. while the edge vector field € drives a particle along the object
boundary. the normal velocity field 77 forces the particle to stay within the confines of
the boundary. In terms of edge localization, the edge vector field is used to locate an
edge in the direction tangential to the edges while the normal compressive velocity field
localizes the edge in the direction normal to the edge. The particle trajectory obtained
using Equation 5.4 with @ = 0.1 and 3 = 0 is displayed in Figure 5.3-b where pg is a
starting point. Clearly the absence of the normal compressive velocity field results in
a spiral trajectory pattern. The particle trajectories obtained using Equation 3.4 with
a =0.1. 3=0.1.and 7 = tV|VL| and 77 = %V"’L - VL are shown in Figures 5.3-d
and 5.3-f respectively. In all examples in Figure 5.3. bilinear interpolation was used to
estimate the field values. Obviously. the combination of the edge vector field and the

normal compressive velocity field vields closed trajectories confined to object boundaries.

5.1.2 Particle Trajectories in a Combined Orthogonal Velocity Field

From Equation 5.4. we see that the particle trajectory depends on the starting point.
scale of the masks . the tangential and normal compressive velocity fields. and param-
eters o and 3. Figure 5.1 illustrates how the particle follows the object boundary at the
object corner using various ratios ;11 [n the case when i = V|V L|. the ratio f has little
effect on the resulting trajectories. In contrast. when 7 = V2L - VL. the significance
of f can be observed. As scen in Figure 5.4-b. the larger the ratio ;’ the closer the
trajectory to the object edge. The asymmetrical property of the particle trajectory can
also be seen in Figure 5.4-b.

Another important parameter is the scale o of the masks used to generate the fields.
Figure 5.5 shows the effect of o on the particle trajectories where multiscale Gaussian
differential masks with different values of o were used to generate the fields. Both Fig-
ures 5.5-a and 5.5-b demonstrate that the larger the scale. the smoother the trajectory
resulting in poor edge localization. One obvious difference between the trajectory ob-
tained using 7 = V|VL| and that obtained using i = 1VZL - VL is that in the first
case. the obtained trajectory tends to be smaller than the actual object boundary par-
ticularly at corners while in the latter case, the particle deviates away from the object
boundary at corners resulting in a trajectory larger than the actual object boundary.

The object boundaries can be retrieved by following the convergent paths of the
particle trajectories. In order to allow the particle to converge to the true boundaries
rapidly. local maxima of the gradient magnitude image are used as initial points. By

using both positive and negative values of the tangential stepping factor. the algorithm
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Figure 5.4 Particle trajectories at the object corner obtained using Equa-
tion 5.4 with 0 = 1.0: (a) 7 = iV|VL|and (b) 7= 1V?L-VL.
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can be extended to boundary extraction of multiple objects.

5.1.3 Disadvantages of the Previous Particle Model

The boundary extraction algorithm based on particle motion in a combined orthog-
onal velocity field in the previous work has several advantages. Since the positions of a
particle in Equation 5.4 are real and can be computed using an arbitrary step size. this
algorithm provides results with subpixel resolution. Due to its sequential edge linking
scheme. the method is topologically unrestricted and requires simple initialization. In
addition. the boundaries obtained by the method are guaranteed to be connected. The
method is also fast and simple. Nevertheless. the algorithm also suffers from several

sources of edge localization errors.

1. Edge localization error due to the particle motion equation. Equation 5.4
does not exploit the optimization algorithm for edge localization. In Equation 5.4.
the particle position is updated in both tangential and normal direction in each
time step. Hence. before the particle rrajectory converges to the object boundary
the particle has already traveled some distance in the tangential direction. This
causes significant distortion at corners. In other words. the particle model based
on Equation 5.4 has an ~inertial force™ preventing the particle to follow the object

boundaries in the areas of high curvature accurately.

2. Edge localization error due to the normal compressive velocity field.
Most edge localization errors occur at corners and junctions. The trajectory ob-
tained using the normalized gradient of the gradient magnitude image tends to cut
through the corners while that obtained using the normalized Laplacian-gradient

vector field tends to deviate away from the corners.

3. Edge localization error due to the size of the differential masks. The cffect
of the mask size on the detected object edges is well known in image processing.
Using small size differential masks. accurate boundaries can be obtained but the
results are prone to noise. On the other hand. large size masks vield results with

better noise suppression but poorer edge localization.

In addition to edge localization error. the representation of the particle trajectory is less

cfficient since all computed positions of the particle are recorded as boundary points.
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5.2 New Model for Boundary Extraction

At the heart of boundary extraction is edge localization. The performance of bound-
ary extraction algorithms is usually determined in terms of the accuracy of edge lo-
calization. In general. for sequential boundary extraction. two edge localization steps.
one in tangential and another in normal direction of object boundaries, are necessary.
In the previous work. the edge vector field orthogonal to image gradient is used to di-
rect the particle along object boundaries in the tangential direction while the normal
compressive velocity field forces the particle to rest on the boundary. The overall per-
formance of the algorithm depends significantly on the choice of the fields and edge
localization methods. A generalized framework for deriving the tangential and normal
compressive velocity fields and a new edge localization scheme for overcoming the earlier

disadvantages are proposed next.

5.2.1 Fields for Boundary Localization

The fields used for edge localization are refered to as tangential and normal com-
pressive velocity fields. £ and fi. respectively. The tangential velocity field must have all
flux lines parallel or directed tangential to the nearest boundary edge while all flux lines
in the normal compressive velocity field must point toward the nearest boundary edge.
Ouly the fields that satisfv these conditions are useful for boundary extraction.

The normal compressive velocity field has the unique compressive property where all
flux lines are directed to the proximate object boundary. An example of the field having
this property is the gradient of gradient magnitude image. V(]VL}). Since the maximum
gracdient path always occurs at an object boundary and V(|VL|) always points towards
the areas of the higher gradient magnitude. V(|V L[) always points to the boundary. In
the case of the Laplacian-gradient vector field V2L - VL. the compressive property is
due to the multiplication

A=A\-= (5.7)

where A is the scalar boundary localization field with its sign indicating the side with
respect to the boundary and % is the normal velocity field with its flux lines oblique

or orthogonal to the object boundaries in one direction. similar to the gradient field.
LELer+2L:LyLey+L3Ly,
l,:‘;fL;’_;

case of the Laplacian-gradient vector field, A = V2L and ¥ = VL. Using the boundaries

Principal choices of A are L, = and V?L. For example. in the

as dividing lines. sign(A) determines if a point is inside or outside the objects. The change

of sign(A) is used to locate the boundaries. Figures 5.6-¢ and 5.7-¢ show examples of L.,
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and V2L computed using the Gaussian differential masks with ¢ = 1.0. Assuming that
the objects are darker than background. in both Figures 5.6-c and 5.7-c. the positive
signs indicate the pixels inside the object while the negative signs indicate the pixels
outside the object.

For the normal velocity field 5. the principal choice is the gradient field VL as
shown in Figures 5.6-b and 5.7-b. Although. the gradient flux lines are orthogonal to
the boundaries. the gradient field does not have the compressive property since all local
gradient vectors at pixels inside and outside the object point in the same direction of the
steepest inclination. On the other hand. even though. the boundaries can be detected by
observing the changes of sign(\). no direction information can be obtained directly from
A. However. when % is multiplied by A. the resultant vector field 77 becomes the normal
compressive velocity field and all vectors in the field point to the nearest boundary edge.
Figure 5.6-d shows the results for 7 = L., - VL and Figure 5.7-d presents the results for
i1 = V2L-VL. Therefore. the complete information for edge localization in both normal
direction and location can be obtained from the normal compressive velocity field. Once

the normal velocity field 7 is given. ¢ can be obtained by rotating % by 90 degrees. that

1.
Fo= (9" 5.8)
= "yl =) (5.9)

where =~ and ~, are r and y components of <.

In addition to computing ¢ and 7. A and 5 can also be used for determining the

i

boundary supports. Let g be defined as

VL VA
= e ) (5.10)
IVL| VA
The boundary support regions are determined by
i < 0. (5.11)
The examples of VA where A = L, and A\ = V2L, computed using the Gaussian

differential masks with ¢ = 1.0 are shown in Figures 5.6-¢ and 5.7-e¢ while images of j
are shown in Figures 5.6-f and 5.7-f where the dark arcas represent the boundary support

regions.

5.2.2 New Edge Localization Method: 2-Step Approach

The purpose of using 2 velocity fields. one tangential and another orthogonal to

the boundaries. is that the first field provides information in the tangential direction
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while the second one is used to locate the boundaries in the normal direction. In this
research. a 2-step approach is proposed to improve edge localization performance. Edge
localization in the direction tangential to the boundary is used to extract the boundaryv
while edge localization in the normal direction provides an adjustment to improve edge

localization.

Step 1

For the given tangential and normal compressive velocity fields. £ and 7. the updating

equation for the particle position in the tangential direction is given by

fre—
[32.0) = Pr-1 + L (5.
-1l

T
—
(V]

N

where #;_; is the tangential velocity at the previous position pi_; and a is a tangential
- - . ., . . . - . 0) .

step size. After updating the particle position in the tangential direction. [3‘&.) is not

guaranteed to lie on the boundary. The minor position adjustment in the direction

normal to the boundary is required.

Step 2

Once. the position of the particle is updated in the direction tangential to the bound-
ary. the particle will be forced to move only in the direction normal to the boundary-.

. . - e e . . Q) . . .
The normal direction iy at the initial point 131. Vs approximated by the unit vector:

)
i = (_7‘07)__ (5.13)
g
~(0)
_ -
= o (5.14)
%% |

The particle position is then allowed to be updated only along the line {:
0 _
l(z) = 13(‘.) + gz, z € R.
Edge localization in the normal direction is performed by minimizing |A| along the line
[ by the recursive equation:
i~ 1 L L(i-1)y = - 1=
13{.') = [31' Y+ 3 - ng . (5.13)
: ~(i=1) : e i) 3

where 77}, is the normal compressive velocity at the position p,,~ ' and .3 is a normal

stepping factor. .3 > 0. The position [){.” is updated until |\| approaches zero or the
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number of iterations ! exceeds the maximum number of iterations allowed. [31.'"‘"‘) will be
used as the initial position for the next edge localization step in the tangential direction.
Unlike the previous particle model. the shapes of the boundaries obtained using this
method will not be affected by a and 3.

For a given boundary point pg. the tangential step size a. and the normal step factor

3. the overall pseudo code for determining the next boundaryv point p, is given below:

L. py = po +(1:-:::—£%.

27y = s

3. fori:=11to N,

1 Dy =y + 3y - 11(py)) -
3. if (i - 7(p1)| < € then

break.

6. return p,.

[n practice. the value of .3 can be set to a small fixed positive number.

Figure 5.8 shows the results obtained using the 2-step edge localization method with
a and .3 = 0.1 compared with the results obtained using the l-step edge localization
method based on Equation 5.4. The Gaussian differential masks with o = 1.0 were used
to generate the fields while bilinear interpolation was used to estimate the field values.
In Figures 5.8-a and 5.8-¢ where 7 = V(|VL|) and i = L,,.VL. the differences between
the results obtained using the 2 methods are not significant. However. Figure 5.8-b
shows the effect of the inertial force presented in the l-step method. Figure 3.9 illus-
trates boundaries extracted using the 2-step edge localization scheme at various o with
bilinear interpolation used to estimate the field values. Obviously. larger o generates the
smoother boundaries. In addition. near the corners. the extracted boundaries obtained
using A = V2L are slightly larger than the actual boundary while those obtained using
A = L, are smaller than the actual boundary. These patterns are consistent with the

shapes of boundary support arcas shown in Figures 5.6-f and 5.7-f.

5.3 Practical Implementation

This section investigates the problems encountered in the implementation of bound-

ary extraction algorithm including initialization. boundary extraction of connected re-
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Figure 5.8 Extracted boundaries using l-step and 2-step edge localization
schemes with £ = (VL)*.a =0.1. 3 = 0.1 and (a) 7 = V(JVL|).
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Figure 5.9 Extracted boundaries using the 2-step edge localization scheme
with £ = (VL)*. o = 0.1. 3 = 0.1. and (a) @ = L,.VL. (b)
ii=V?LVL.

gions. estimation of boundary points. and termination criteria. In 2 dimensions. bound-
aries are in general represented in the form of planar graphs. Data structures and

yrocedures used in the construction of boundaries are discussed in Appendix B.
p

5.3.1 Initialization of Boundary Extraction Process

In order to allow the particle trajectory to converge to the true object boundary
rapidly. the particle trajectory must start at the point close to the boundary. Since the
boundaries are associated with regions of large gradient magnitude. potential candidates
for starting points of the particle trajectories are local maxima of the gradient magnitude
image |V L|. However. since the local maximum points of the gradient magnitude image
may not lie exactly on the boundaries. edge localization techniques must be used to
optimize the starting points. Next. the different local maxima must be evaluated in
terms of their significance.

In human vision. the most dominant edges are provided by high contrast objects.
Therefore. in this research. a set of starting points for the boundary extraction process
is obtained from local maxima of [V L| sorted in the descending order. For each starting
point. the boundary extraction process is performed until the termination criterion is
met. The process is then restarted at the next starting point until all starting points
are used. Using local maxima of [V L| as starting points, the process can be automated.

Figure 5.10 shows extracted boundaries of isolated objects. All fields were computed
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(d)

Figure 5.10 Example of an image containing isolated objects: (a) VL. (b)
(VL)*. (¢) |[VL]. (d) extracted boundarices.

using the Gaussian differential masks with o = 0.5. As seen. the corresponding edge
vector field forms complete loops encircling individual objects as shown in Figure 5.10-b.
The clockwise direction of the loop indicates that the object intensity is higher than the
background intensity while the counterclockwise direction of the loop indicates that the
object intensity is lower than the background intensity. Figure 5.10-¢ shows [V L| with
local maxima indicated by the “+7" signs. The resultant boundaries obtained using the
2-step edge localization with @ = 0.1. .3 = 0.05. f = (VL)*. and A = L., are shown in

Figure 5.10-d.
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5.3.2 Boundary Extraction of Connected Regions

In the case of connected regions as demonstrated in Figure 5.11-a where 3 different
regions are labeled by the numbers 1. 2. and 3. the corresponding edge vector field
does not form closed loops but rather a complicated “circuit”™ of edge vector currents as
iflustrated in Figure 5.11-b. Therefore. boundaries of connected regions can be modeled
by planar graphs whose branches and nodes correspond to boundaries between pairs of
connected regions and junctions respectively.

The proposed edge localization scheme is based on minimization of |\| along with
the boundary where different signs of A represent different regions. However. using
sign of A to locate boundaries is not valid when dealing with the junctions where 3 or
more regions meet. This is because description of 3 or more connected regions needs
the descriptor having number of states to be equal to the number of regions while the
stign of A has only 2 possible states. positive and negative. As seen in Figure 5.11-d.
boundaries of Region 1 can be located using zero crossings of A. However. boundaries
between Region 2 and Region 3 at junctions A and B cannot be located using zero
crossings of A. Moreover. not all zero crossings of A correspond to boundaries. For
example. in Figure 5.11-d. there exists no boundary at point C where zero crossing of A
occurs. These false indications are filtered out using boundary support areas which will
be described in Section 5.4. To handle the problem of extracting boundaries at junctions
where sign(A) is not adequate. edge localization by minimizing |A\| must be relaxed by
reducing the number of maximum iterations used in the second step of edge localization.
This allows the particle to follow the tangential velocity field and rapidly merge with
another boundary. Since edge localization is relaxed. the values of A associated with the
boundary points near the junctions are not expected to be close to zero.

Another problem of extracting boundaries of connected objects is illustrated in Figure
5.11-e. A particle that follows the tangential velocity field only in one direction does
not completely extract the boundary of Region 2. This is because when the particle
starts at Point D and travels along the boundary of Region 2 in the counterclockwise
direction. at B. the trajectory shifts to the stronger edge vector currents in Region 1
and does not return back to complete the boundary of Region 2. In other words. the
particle cannot escape to the weak edge vector currents once it is caught in the strong
edge vector currents. This problem can be solved by allowing the particle to follow the
tangential velocity field in forward direction by using positive a and backward direction
by using negative . This 2-way boundary extraction tracks weak edges completely

in both forward and backward directions. The result of 2-way boundary extraction is
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Figure 5.11 Boundary extraction of connected objects: (a) VL. (b) edge
vector field (VL)*. (¢) |VL]. (d) Ly.. All fields are computed
using Gaussian differential masks with o = 0.5. Boundaries
obtained using £ = (VL)Y and A = L,: (e) 1-way. (f) 2-way-
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shown in Figure 5.11-f.

5.3.3 Estimation of Boundary Points

Another problem encountered in boundary extraction is efficient representation of
information using minimum memory storage while preserving all significant details. In
the particle model. since all positions of the particle are recorded as boundary points. the
method does not take into account the optimal locations of points along the boundary
line. Consequently. if the step size used is too fine. extracted boundaries will con-
tain redundant collinear boundary points. One way of reducing the number of points
for boundary representation is to store only boundary points separated by a specified

threshold distance:
|Pi+1 — Pr| 2 AT (5.16)

where A7 is the minimum allowed distance between the recorded boundary points.
Nevertheless. this method does not truly utilize geometrical information of the image.
- le)

Another approach is to store corners and junctions and decimate redundant collinear
points.

Let s(w) be a parameterized curve with the arc length parameter u. the tangent
vector t of s is defined as ~

~  ds{u)

t = ; 3.17
du (5.17)

The curvature A of s 1s defined as

- dt o*5(u) -
h=—=—->. (5.18)
du du?
Geometrically. local extrema of & are corners of the curve. However. in the boundary
extraction problem. an explicit parametric equation of the boundary curve is unavailable.

For corner detection. the curvature in Equation 5.18 can be replaced by

_ 3Ly, —2L.L,Ly+ L3L.,
L2+ L2 ’

L rr

Local maxima of |L,...] along the curve and other features such as A can detect corners and
other suitable boundary points. In practice. in high curvature areas. the values of \ along
extracted boundaries hardly approach zero. Therefore. corners can also be reflected by
local maxima of |A] along the boundaries. Simplification of boundary representation can
be done by maintaining only those boundary points that coincide with local extrema of

the selected feature image.
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Figure 5.12 Results obtained using various boundary point estimation
methods: (a) original image. (b) L,.. (¢) and (d) results ob-
tained using AT = 0.5 and 1.0 pixels, (e) and (f) results ob-
tained using local extrema of L., and L., respectively.
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Table 5.1 The numbers of boundary points of the results in Figure 5.12.

Figure The number of boundary points

5.12-¢ 1406
5.12-d 971
5.12-¢ 668
5.12-d 993

Figure 5.12 demonstrates results obtained using various boundary point estimation
methods. All fields were computed using the Gaussian differential masks with o = 1.
Figure 5.12-b displays the image of L., where dark and white regions reflect object
corners. In Figures 5.12-¢ to 5.12-f. the 2-step edge localization method with £ = (VL)*,
A= Lyp. a =0.1. and 3 = 0.1 and bicubic B-spline polvnomial interpolation were
used to compute particle trajectories. Figures 5.12-¢ and 5.12-d show results obtained
using A7 = 0.5 and 1.0 pixels. The numbers of points recorded are 1406 and 971. In
contrast. only 668 and 993 boundary points are recorded in the results obtained using
local extrema of L., and L., respectively as shown in Figures 5.12-¢ and 5.12-f. These

results are summarized in Table 5.1.

5.3.4 Termination of Boundary Extraction

In boundary extraction. a suitable choice of termination criterion is essential in order
to prevent the process from repeatedly tracking the same parts of boundaries or straving

away from the object. In this research. 4 termination criteria are used:

1. When the particle reaches the starting point of the trajectory. boundary extraction
must be terminated by closing the boundary loop. This condition can be detected
by measuring the distance between the current position of the particle and the

starting point.

2. When the particle reaches some previously extracted boundaries. the process must

be terminated by creating a junction at the terminating point.

3. When the particle travels bevond borders of the image. boundary extraction must
be terminated. This condition can be detected by comparing the coordinate of the

particle with borders of the image.
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4. In some rare cases. namely local traps. the particle can be trapped in a small
loop formed in the tangential velocity field or locked in the areas where both ¢
and 77 approach zero. Therefore. if the particle has not traveled bevond some
small distance e with respect to the previously recorded boundary point. after .V
iterations. the process must be terminated to avoid the local trap. The values of

¢ and .V depend on the step size a. .V can be set to be multiples of =.

5.4 Choices of Fields

5.4.1 Boundary Localization Field (\)

Since the 2-step edge localization method minimizes {A| along the extracted bound-
aries. zeros crossings of A associated with boundaries roughly determine the shapes of

objects. Candidate choices of \ are
[ L:Lrr +2L,L,L,, + L',j[.yy
wuw T 1 +)
L2+ L3

and
ViL=L.,+L,,.

Figure 5.13 shows the results obtained using the 2-step edge localization method
with £ = (VL)~. a = 0.1. and different choices of \. Bilinear interpolation was used to
approximate the field value. All fields were computed using Gaussian differential masks
with o = 1. The boundary in Figure 5.13-a obtained using A\ = L., is smaller than the
actual boundary while the boundary in Figure 5.13-b obtained using A = V>L is larger

than the actual boundary. Consequently. L., was combined with V2L to get
AN=V?L + L,.. (5.19)

to obtain an improved result. Figure 5.13-¢ shows the corresponding result. Another
example demonstrating the effect of A is shown in Figure 5.14. All fields are computed
using the Gaussian differential masks with o = 5 and using { = (VL)* and o = 0.5 with
bilinear interpolation for surface approximation. As in the previous example. the best

result shown in Figure 5.14-¢ was obtained using A = V?L + L,.,.

5.4.2 Normal Velocity Field (%)

From Section 5.2, two critical components, the tangential and normal compressive

velocity fields. ¢ and 7i. are derived from
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(a) (b)

A

(c)

Figure 5.14 Results obtained using £ = (VL)*. a = 0.5. and (a) A = Ly
(b)) A=V?L. (¢) A\=V?L +L,,.



and

In general. the principal choice of 7 is VL. However. as demonstrated by Figure 5.15-a.
~ = VL is not effective when the fields are generated from the multiple scale differential
masks. Besides VL. —V A can be used as an alternative choice for 5. Figure 5.15-¢
shows the improved result obtained using ¥ = —VA. Compared with the method using

A = VL. the method using ¥ = —V A vields better edge localization performance in the

arcas of high curvature.
Nevertheless. in the case of connected objects. ¥ = —V N\ also results in some false
boundaries as demonstrated in Figure 5.15-d. Combining the advantages ¥ = VL to

track junctions and ¥ = —V )\ to track high curvature regions. the generalized expression

of the normal velocity field ~ is proposed as

T =0 (i)VL —oy(pt)VA (5.20)
where p = %{— . % oy is an arbitrary function of x. and o, is a decreasing function of
1. One choice of 7 is given by

- 1 —p - .
~=VL - ——.)——\7,\. (5.21)

Figure 5.16 displayvs the results obtained using < in Equation 5.21. Boundary sup-
port areas are shown by the dark pixels in Figures 5.16-¢ and 5.16-d while extracted
boundaries are shown in Figures 5.16-e¢ and 5.16-f. Obviously. results obtained using
~=VL- l—.'_,‘iv/\ are superior to those obtained using ¥ = VL and ¥ = VA in handling

object junctions and tracking boundaries in the high curvature areas.

5.5 Experimental Results

From the previous section. the choice of differential masks. surface approximation.
fields. edge localization method. and boundary representation used in this experiment
are summarized in Table 5.2. The values of scale parameters depend on sizes of stnictures

of interest. Selection of a scale parameter o is applied in the generation of fields.

5.5.1 Boundary Extraction of Multiscale Objects

Multiscale structures contain structures at different scales that can be observed by

means of using multiscale filtering techniques. Boundary extraction of structures at cach
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Boundary extraction results obtained using a = 0.1.
A= L w+V?L: (a)and (b) ¥ =VL. (¢)and (d) ¥ = =VA. All
fields are computed using multiple scale Gaussian differential
masks with ¢ varyving from 1 to 8.
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Table 5.2 Choices of differential masks, surface approximation method.
ficlds. edge localization method. and boundaryv representation
used in the experiment.

Differential masks Multiscale Gaussian differential masks and
multiple scale Gaussian differential masks

Surface approximation method Bilinear interpolation

Boundary localization field A=L,,.+ VL

Normal velocity field ¥=VL - l—:;-’iV/\ where 1 = % . -%

Normal compressive velocity field n=A-~

Tangential velocity field t=(9)*

Edge localization 2-Step approach with o = 0.1

Boundary representation Doubly-connected edge lists

Minimum allowed distance AT for 1 pixel
marking boundary points

scale can be performed using multiscale differential masks of the corresponding size. The
suitable choice of scale parameters depends on the size of structures of interest. \When
such information is unavailable. selection of scales can be done using global scale analysis
or local scale analyvsis described in previous chapters. Global scale analysis also provides
information of existing scales that can be used to separate structures in an image at
different scales. Local minima of the DPSNVR graph correspond to scales existing
in the underlying image. Multiscale boundary extraction are performed by extracting
boundaries of objects at ecach individual scale separately. Next. several examples of
multiscale boundary extraction utilizing scale information obtained from the DPSNVR
graphs are presented.

The first example in Figure 5.17 shows a simulated image of a multiscale snowflake.
The DPSNVR graph in Figure 5.17-b shows 3 local minima at ¢ = 0.88. 4.07. and
11.75 corresponding to 3 existing scales. Multiscale boundary extraction of structures
at these 3 scales are shown in Figure 5.18 where details at each scale are clearly seen.
The examples in Figures 5.19 and 5.20 demonstrate multiscale boundary extraction of
multiscale cluster-like objects. respectively. in the absence and presence of noise. The
image in Figure 5.20-a is the degraded version of the image in Figure 5.19-a corrupted
by additive white Gaussian noise with signal to noise ratio 2. All 3 existing scales of
these two images are detected by local minima of the corresponding DPSNV'R graphs

in Figures 5.19-b and 5.20-b. In the absence of noise. the results displaved in Figure
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Figure 5.17 Image of a multiscale object: (a) original image. (b) DPSNVR

graph.

5.21 clearly show the boundaries of the objects at individual scales. Furthermore. the
extracted boundaries at large scales shown in Figure 5.22 are unaffected by noise.

The next example in Figure 5.23 shows a real image of multiscale object. The image
consists of 3 scale structures as reflected by 3 local minima in the DPSNVR graph in
Figure 5.23-b. Boundary extraction results obtained using the scale parameters selected

from the local minima of the DPSNVR graph are shown in Figure 5.24. As in the three

previous examples. details at each scale are precisely obtained.

5.5.2 Boundary Extraction of Real Images

In general. natural images do not always contain multiscale structures. Selection of
a suitable scale can be difficult. Moreover. natural images usually contain fuzzy objects
with different degrees of blurring rendering the use of single-scale differential masks
incftective. In these cascs. multiple scale differential masks can be emploved to handle
edges with different degrees of blurring and to simplify the scale selection process where
a rough range of o can be specified instead of using a single value of o as in the case of
a single scale differential mask. Several examples of real images and the results of the
proposed boundary extraction are given next. The analyvsis of aerial. facial, and medical
images are presented. In Figures 5.25 and 5.27. the multiple scale Gaussian differential
masks with o varyving from 0.5 to 2.0 were used. For the images containing edges
with different degrees of blurring shown in Figures 5.29 and 5.31, the multiple scale

Gaussian differential masks with o varving from 0.5 to 4. were used. The boundary



Figure 5.18 Gradient images and extracted boundaries of the image in Fig-
ure 5.17-a obtained using: (a) and (b) ¢ = 0.88. (¢) and (d)
o = 4.07, (e) and (f) o = 11.75.
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Figure 5.19 Image of multiscale objects: (a) original image. (b) DPSNVR
graph.

-J

= ..;';t::r.ﬂ;*«h*

.1

0.8+ \
0.7+
0.6}
!
10° 10'
(o}
(b)

Figure 5.20 Degraded image with SNR = 2 of the image in Figure 5.19-a:
(a) original image. (b) DPSNVR graph.
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Gradient images and extracted boundaries of the image in Fig-
ure 5.19-a obtained using: (a) and (b) o = 0.78. (c¢) and (d)
o = 6.52. (e) and (f) o = 27.84.



132

(f)

Gradient images and extracted boundaries of the image in Fig-
4

ur
g

7.84.

2

0-a obtained using: (a) and (b) ¢ = 1.72, (c) and (d)
(f) o =

¢ 5.2
=7T.

ure 5.22

o
o

i

F



133

(a) (b)

Figure 5.23 Multiscale objects: (a) original image. (b) DPSNVR graph.

point estimnation method based on the minimum allowed distance was used for storing
the results in Figures 5.30 and 3.32 while the method based on local extrema of |L,.| was
used in Figures 5.26 and 5.28. In these examples. most of boundaries were successfully
extracted while very few incomplete boundaries exist. In Figure 5.30. sharp edges and
blurred edges are captured with subpixel accuracy. The algorithm has no difficulty in

handling junctions and different topologies of boundaries of multiple connected objects.
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(e) (f)

Figure 5.24 Gradient images and extracted boundaries of the image in Fig-
ure 5.23-a obtained using: (a) and (b) o = 0.3, (¢) and (d)
o =4.77. (e) and (f) o = 18.81.
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Original image (above) and gradient image (below).
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.26 Extracted boundaries.

3

Figure



Figure 5.27 MRI image (above) and gradient image (below). (From the
Whole Brain Atlas. http://www.med.harvard.edu/AANLIB
/home.html. Courtesy of Keith A. Johnson. M.D.. and .J. Alex

Becker.)
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Figure 5.28 Extracted boundaries.
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Figure 5.29 Original image (above) and gradient image (below).
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Figure 5.31 Original image (above) and gradient image (below).
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CHAPTER 6. SUMMARY

From scale analysis to boundary extraction. a framework for multiscale boundary
extraction has been established. Scale analysis involves analyvsis of the sizes of structures
cmbedded in an image. Two major concepts of scales. global and local scales have
been addressed. Global scales refer to resolutions at which objects in an image exhibit
distinctive global patterns while local scales are related to sizes of local structures. This
dissertation presents techniques for analysis of global and local scales and multiscale
boundary extraction.

A frequency domain approach for global scale analyvsis based on the differential power
spectrum normalized variance ratio (DPSNVR) is developed. A family of multiscale
differential masks of a continuum of sizes is used to generate multiscale representation
of an image. For global scale detection. the proposed method depends on local minima
of the DPSNVR graph. The technique is robust. reliable. and provides accurate estimate
of scales even in the presence of noise. Experimental results indicate that the dominant
global scales are reflected by local minima of the DPSNVR graph while weak global scales
are reflected by local extrema of the slope of the DPSNVR graph. The scale parameters
obtained from local minima of the DPSNVR graph are suitable for multiscale boundary
extraction.

The second issue related to the problem of scales in image analyvsis is sizing local
structures. Local scale analysis determines the size as well as position of structures based
on local maxima of the scale-space differential structure image. Information obtained
from local scale analysis can be used for blur estimation and adaptive scale selection for
analyvsis of local structures. In general. local scale analysis requires exhaustive search over
scale-space domain and hence is computationally expensive. An alternate method for
utilizing multiscale data based on summation of image features with respect to the scale
parameter is proposed. This leads to the development of the new concept. the multiple
scale differential masks derived by the summation of normalized differential masks of
exponentially increasing sizes. The method vields details at several scales simultancously

and therefore preserves structures at those scales. From structures that survive over a
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range of scales. the operator eliminates the problem of shape distortion occurring when
the large size difference operators are emploved. On the other hand. spurious details that
do not survive over change of scales are eliminated. The multiple scale differential mask
requires a range of scales of interest to be specified instead of a single scale resulting in
increasing the scale selection tolerance. In addition. the computational effort needed to
compute the multiple scale differential masks is slightly greater than that required in
the computation of the conventional multiscale differential mask.

Finally. a generalized boundary extraction algorithm is given. The method is devel-
oped from the model of particle motion in a combined orthogonal velocity field. Two
velocity fields. the tangential and the normal compressive velocity fields. required in the
maodel are generated from the boundary localization field and the normal velocity field.
General expressions as well as suitable choices of the fields are given. To eliminate the
inertial effect of the earlier method. the edge localization algorithm is separated into
2 independent steps. one locates edges in the tangential direction and the second step
locates edges in the normal direction. Boundary extraction is based on minimization
of the absolute values of the boundary localization field along the particle trajectory.
The properties of the tangential velocity field and the normal compressive velocity field
guarantee that the particle will travel along the paths close to object boundaries. The
proposed boundary extraction method is simple. fast. reliable. and vields results with
subpixel accuracy.

Beside edge localization. other related issues including estimation of boundary points
and boundary representation are also addressed. The boundary points estimation method
climinates redundant boundary points to vield efficient boundary representation. Two
schiemes. one based on the minimum allowed distance and another based on image fea-
tures such as corners. are implemented. The method based on image features can sig-
nificantly reduce the number of boundary representation points while maintaining the
overall object shape. For boundary representation. extracted boundaries are represented
in the forin of planar graphs using doubly-connected edge lists which can represent
boundaries of objects of arbitrary topologies.

The methods addressed in this dissertation are parts of intermediate level image
analysis. Using the proposed scale analysis techniques for scale selection in conjunction
with the boundary extraction algorithm. multiscale image segmentation is achieved. In
real applications. further processes such as image interpretation utilizing data obtained

from image segmentation are emploved to accomplish the final goal of image analysis.



APPENDIX A. 2-DIMENSIONAL SURFACE
APPROXIMATION

Bilinear Polynomial Interpolation

For the 2-dimensional equally spaced discretized field f. bilinear polynomial interpo-
lation estimates the field value at a particular point (. y) from the field values at the 4
neighboring observable points (n.m). (n+1.m). (n.m+1). and (n+ 1. m + 1) as shown
in Figure A.l-a by

1

l
floy) = YD b0(An)b,(Ady)f(n+iom + )

=0 y=0
[ 1
= ZZB,_Jf(u +iom+ )
1=0 j=0
where Ao = o+ —n. Ay = y — m while b,./ = 0.1 are the polvnomial interpolation

bending functions. For linear interpolation. these functions are given by
bo(u) =1—u

and

by(u) = u.

and B, , = b,(Ar)b,(Ay). Note that indices n and m in Equation A.l are integer parts
of r and y respectively where n < r < n+1 and m < y < m + 1. Geometrically.

interpolation coefficients B, ; are areas of rectangles as illustrated in Figure A.l-a.

Bicubic B-Spline Polynomial Interpolation

Although bilinear interpolation provides a continuous approximation of the 2-dimensional
field. the method uses only 4 neighboring points to estimate the field value causing dis-
continuities in the first order derivatives of the field. An alternative method that provides

the continuous approximations of the field and its derivatives up to order 2 is the bicubic
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Figure A.1 (a) Interpolation points and coefficients of bilinear interpolation
and (b) control points of bicubic B-spline interpolation.

B-spline polynomial approximation:

303
flr.y) = Z Zb,(A.r)bj(Ay)f(u +i—1.m+j—1) (A1)

1=0 =0

where the bending functions b, are given by

l ;

bo(u) = 6(1 - u)?
1 9 a3

bi(u) = 6(4 — Gu” + 3u”?)
1 y .

by(u) = 6(1 + 3u + 3u® — 3u?)

and
by(u) = 6113.
In Equation A.l. the neighboring points (n+i—1.m+ j —1). i.j = 0.....3. are

not used as the interpolated points but control points of the B-spline surface. As a
result. the approximated surface does not pass through but is confined to the convex
hulls formed by these points. Despite this configuration. the bicubic B-spline surface
provides an accurate polynomial approximation of a 2-dimensional discrete field. Using
the field values at 16 neighboring points shown in Figure A.1-b. the bicubic B-spline
interpolation vields a smoother continuous approximation compared to that obtained

using bilinear interpolation.
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APPENDIX B. DATA STRUCTURES AND PROCEDURES
FOR CONSTRUCTING BOUNDARY REPRESENTATION

Design of data structures and schemes for representing complete boundary infor-
mation is crucial. In general. sequences of boundary points are used for representing
boundaries. However. this representation is inefficient in the case of boundaries of con-
nected regions with junctions. Due to different topologies of connected regions. special
procedures are needed for handling junctions. In addition to the problem of handling
junctions. detection of a state when a particle reaches the previously extracted bound-
ary requires exhaustive search to find the extracted boundary point which is closest to
the current particle position. However. when the number of extracted boundary points
becomes large. the computational time needed increases linearly. Therefore. a heuristic

algorithm is needed to reduce the search time.

Doubly-Connected Edge List

In general. a planar graph is used for representing a network and a boundary. A graph
consists of vertices. edges. and faces as shown in Figure B.1-a. A vertex stores position
information and properties associated with it while an edge is a line segments connecting
a pair of vertices. A face is a maximal connected subset of a plane that does not contain
a vertex inside. In other words. a face is an open polygonal region bounded by edges
and vertices. A graph is consider to be planar if there is no crossing between a pair
of edges. In image segmentation. a face corresponds to a segmented region while edges
and vertices represent boundaries between regions. One popular structure that used for
graph representation is the doubly-connected edge list [19]. The doubly-connected edge
list consists of 3 collections of records: vertex. half-edge. and face lists. Data structures

of the doubly-connected edge list are summarized below:

I. A vertex record. Each vertex record contains a coordinate of vertex ¢ and the
half-edge pointer. namely the incident edge. to one of half-edges that has ¢ as its

origin.
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2. A half-edge record. Each edge is represented by the corresponding pair between
half-edge and its twin as shown in Figure B.1-b. Each half-edge has direction
opposite to that of its twin and bounds to the face on its left side. A record of the
half-edge ¢ contains a vertex pointer to the origin of € and 3 half-edge pointers
to its twin. next. and previous half-edges respectively as shown in Figure B.I1-b.
[t also stores a face pointer to the face that € bounds. namely the incident face.

Each half-edge has its unique twin. next. and previous half-edges.

3. A face record. Each face record contains one half-edge pointer. namely the
incident edye. selected from one of the half-edges having f as its incident face.
This structure is slightly different from one that used in [19] where two half-edge
pointers. inner and outer half-edges are used. [19].

The advantages of using the doubly-connected edge list are that the structure can
represent N-dimensional graphs of all topologies and support constructing and infor-
mation inquiring operations. The overall structure of the doublyv-connected edge list is
demonstrated by the example in Figure B.2. Tables B.1 to B.3 show all lists of records of
the graph in Figure B.2. A boundary of cach face can be tracked by following half-edges.
starting from the incident edge of the face. until the loop is completed. In cooperating
with the proposed boundary extraction algorithm. the doubly-connected edge list sup-
ports all operations needed for constructing boundary representation which are listed

below.

Initialization

For a given starting point pg. the boundary graph is created as two half-edges are
generated and connected to pg. When the boundary is not terminated. there always
exist the half-edges that attaches to the end vertex of the boundary which are ready to

connect to the next extracted boundary point.

1. Create two new half-edges. é; and €.

2. Assign py to the origin of ¢;.

3. Assign ] to the incident edge of pyg.

1. Assign € to the twin. nect. and previous of €,.
5. Assign ¢ to the twin, nect. and previous of €.

6. Add pg to the vertex list and | and ¢, to the half-edge list.
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Figure B.2 A graph represented by a doublv-connected edge list.
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Table B.1 A face list of the graph in Figure B.2

Face Incident edge

b Co
f2 €6
fa €1

Table B.2 A vertex list of the graph in Figure B.2.

Vertex Coordinates [ncident edge

D (1 5.3. 3) (,-"{)
D2 (0.0.2.0) €y
D3 0 0.0. 0) ('7.,
D1 (3.0.0.0) €1
s (3.0.2.0) €

Table B.3 A half-edge list of the graph in Figure B.2.

Half-edge Origin  Twin  Next Previous Incident face

€1 P e 2% ey f3
) D3 6 3 cl fa
3 P2 c7 €y € f3
(-‘.1 D3 (,_’.g (.71 (."3 f;;
5 s € €3 €y fi
5 J 2] € cly 12 fo
s P3 €3 Cio Cy f 1
€y 25 € cr €5 h
Cy p1 €11 €5 €10 fi
an P2 €12 €y c7 h
€1 Ps €y P €6 fo
€12 P ¢10 €6 €1 fo




(a)

(b)

Figure B.3  Extending the boundary: (a) before. (b) after.

Extending a Boundary

To add the newly extracted boundary point pp to the current boundary. two new

half-edges linking pg to the boundary are created. Let é; be the incident half-edge of the

vertex at the end of the boundary to be extended. As shown in Figure B.3. extension

of the boundary can be done as follows:

I. Create two new half-edges €, and ¢.

2. Assign pg to the origin of ¢, and the origin of the twin of .

3. Assign ¢, to the meident edge of py.

4. Assign &, to the twin and nert of €, and assign ¢, to the twin and previous of €.

3. Assign €, to the nert of @7 and assign € to the previous of €,.

6. Assign the twin of € to the next of ¢, and assign €, to the previous of the twin of

(.

-

Closing a Boundary

Add pr to the vertex list and €, and €, to the half-edge list.

When the particle reaches its starting point. the boundary is closed by linking the

half-edges to the two end vertices of the boundary as shown in Figure B.4. Let py and

pn be the start and end vertices respectively.

1. ¢y := the ncident edge of pg
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Figure B.4 Closing the boundary: (a) before. (b) after.
2. ¢, = the ncident edge of p,

3. Assign pg to the origin of the twin of ¢,
4. Assign ¢, to the previous of ¢y and assign €3 to the next of €,.

3. Assign the twin of €, to the nert of the twin of & and assign the twin of ¢y to the

previous of the tusin of 6,.

6. Update ineident faces of ¢y and its twin.

Inserting a Junction.

Inserting a junction can be done by manipulating the records. After a junction is
inserted. the incident faces of half-edges connected to the junction are needed to be
updated. Let pg. . and €, are a vertex and half-edges where a junction will be inserted
as shown in Figure B.3-a. Let p, and ¢, be the end vertex and its incident edge of
the current boundary that will connect to pg to create a junction. The algorithm for

creating a junction is given below:
1. Assign pg to the orgin of the twin of €,.
2. Assign @, to the nect of €, and assign &, to the previous of é,.
3. Assign €7 to the previous of the twin €, and assign the twin of €, to the next of .

1. Update neident faces of €, and its twin.
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Figure B.5 Inserting a junction: (a) before. (b) after.

Updating an Incident Face

Updating the incident face is performed when boundary is closed or a junction is
inserted. The incident faces of all half-edges connected to the half-edge ¢, and its fwin

that make the last connection are needed to be updated.

1. (-’.[ = (-.(j.

2. if the incident face of ¢ is null
then Create a new face f;.

Add f; to the face list.

3. else

fi := the incident face of &.
4. Assign @) to the incident edge of f.
5. have2faces = true.
6. do
if the incident face of ¢ # null and the incident face of &, # f,
then Remove the incident face of &) from the face list.
Assign f) to the tncident face of .
if ¢, = the twin of &y
then have2faces := false.

| := the next of €.



1. While (-.)_ # C—.().

-

8. if have2face = true
9. then ¢, := the twin of ¢&.

10. if the incident face of €, is null
then Create a new face f;.

Add f; to the face list.

L. else
f1 := the incident face of ¢,.
12. Assign € to the incident edge of f|.
13. do
14 if the incident face of @ # null and the incident face of &, # f,
then Remove the incident face of ) from the face list.
15. Assign f; to the incident face of €.
1G. 1 := the next of .
17. while &, # the twin of ;.

Detection of the Condition for Creating a Junction

In order to detect the condition for creating a new junction. an exhaustive search
1s conducted to find the boundary point closest to the current particle position. How-
ever. when the number of extracted boundary points becomes large. computational time
required for the exhaustive search grows linearly. A heuristic algorithm that reduces
scarching time can be done by dividing the whole image into siaaller areas and assigning
to cach area a list of boundary points located inside the areca. When the particle enters
cach area. only the boundary points in the area are needed to be tested. A collection
of such arcas is called the trajectory map. A trajectory map contains an arrayv of size
(.NV +1) x (M + 1) of T-pixels where .V x )/ is a corresponding image size. Each T-pixel
occupies an area of size 1 image pixel which overlaps each neighboring image pixel by a

quarter pixel as shown in Figure B.G. Since the size of a T-pixel is small enough so that
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Figure B.6 A trajectory map.

no more than one particle trajectory can pass through each T-pixel. instead of record-
ing all boundary points inside the T-pixel. only one vertex pointer. namely the center
certer. to the boundary point closest to the center of the T-pixel and inside the T-pixel
is recorded. Since vertices are connected by half-edges. all vertices inside each T-pixel
can be tracked via the center vertex. If no boundary passes through the T-pixel. the
null value will be assigned to the center vertex pointer. The overlapping configuration
between image pixels and T-pixels is to ensure that the particle trajectory is most likely
to pass to the center of the T-pixel since boundary points usually locate near borders of
image pixels. The pseudo-code for detecting the condition for creating a junction and
terminating the boundary is summarized below.

When the particle enters a T-pixel at position pg. the condition for creating a junction
is needed to be tested only if the number of connected vertices of the center verter of T
is greater than 1. Let ¢ be the incident edge of the center verter of T. The procedure
returns the pointer to the vertex inside T that is closest to py as well as the distance

and the status of the condition for creating a junction.

1. if ¢ 1s null or the number of connected vertices of the center verter < 2

then creating_junction := false

2. else
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m = the origin of €.
e 2= the distance between pg and p,.
Prun 2= Po-
do
do
€, := the next of ).
p1 = the origin of 7).

if p, is inside T then

if the distance between pg and py is less than d,,,,

then d,,,, := the distance between pg and p;.
Pren 2= P1-
while p, is inside T
i := the nert of the twin of &,.
¢ := the nect of &,.
while ¢, # .

if ([nun <€

then creating_junction := truc.

else

creating_junction := false.

return creating_junction. p,,,. and d ;.
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Complete Boundary Extraction Algorithm

The pseudo code for the overall boundary extraction algorithm is given in this section.
The inputs are the tangential and normal compressive velocity fields. the tangential

step size o a list of starting points Pj,,.. and the feature image used for marking the

boundary points.

1. while the number of extracted boundaries < NV, ar

2. do
3. Get pg from the list Pyare-
4. until pg is in the T-pixel that has no boundary on it.
5. Add pg into the vertex list.
6. Creating the boundary using pg as a starting point.
T. Assign pg to the T-pixel that pg lies on.
S. dircection := forward.
9. track2way = false
10. do
11. Pr = .
12. while p; is inside an image
13. if dircction = forward

then p, := find_next_forward_boundary_point(p;).
4. else

»m = find_next_backward_boundaryv_point(p;).

15. if py is outside an image

then Update the incident faces of the current boundary.

break.
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16. else if the boundary point recording condition at p; is met
then Extend the current boundary to p;.
Add p, to the vertex list.
17. if p, is trapped in a local trap
then Update the incident faces of the current boundary.
break.
18. else if p, reaches the starting point pg of some previous boundaries
then Close the boundary by linking
the current boundary to py.
Update the incident faces of the current boundary.
break.
19. else if the condition for creating the junction at p; is met
then I[nsert a junction by connecting the previously marked
vertex to the nearest vertex.

Update the incident faces of the current boundary.

break.
20). else
21. if p; is marked and is closest to the center of the current T-pixel
then Assign p; to the incident vertex of
the current T-pixel.
22, if direction = forward.
then dircction := backuward.
23. else
track2way := true.
2. while track2way = false.

Figure B.7 demonstrates the use of the doubly-connected edge list for boundary rep-
resentation of multiple connected objects. The boundary of each region can be obtained

by retrieving the boundary of the corresponding face as shown in Figures B.7-b to B.7-c.
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Figure B.7  Boundaries of multiple connected objects represented using a
doublyv-connected edge list: (a) boundaries of all faces. (b) to
(¢) boundary of each face.
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